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Abstract 

These notes grew out of the Quantisation Seminar 1997-1998 on Deligne's paper [P. Deligne. 
D6formations de I'alg6bre des fonctions d 'une vari&6 symplectique: Comparaison entre Fedosov 
et De Wilde. Lecomte, Selecta Math. (New Series) 1 (1995) 667-6971 and the lecture of the lirst 
author in the Workshop on Quantisation and Momentum Maps at the University of Warv,ick in 
December 1997. 

We recall the definitions of the cohomology classes introduced by Deligne for equivalence classes 
of differential star products on a symplectic manifold and show the properties of and relations 
between these classes by elementary methods based on (~ech cohomology. © 1999 Elsevier Science 
B.V. All rights reserved. 
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I. Introduction 

In this paper, we present in a purely (~ech cohomology context some of the results given bv 

Deligne [6] concern ing  cohomology classes associated to equivalence classes of differential 

star products on a symplectic manifold.  

Star products were introduced in [ 1 ] to give a deformat ion approach to quantisation.  A star 

product is a tormal de tbrmat ion  of  the algebraic structure of the space of smooth functions on 
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a Poisson manifold, both of the associative structure given by the usual product of functions 

and the Lie structure given by the Poisson bracket. We consider here only differential 

star products (i.e. defined by a series of bidifferential operators) on a symplectic manifold. 

Although the question makes sense more generally for Poisson manifolds, Deligne's method 

depends crucially on the Darboux theorem and the uniqueness of the Moyal star product 

on I/~ 2'' so the methods do not extend to general Poisson manifolds. Different methods are 

used by Kontsevich [17] to construct and classify differential star products on a Poisson 

manifold. 

The existence of a differential star product on any symplectic manifold was first proven 

in 1983 by De Wilde and Lecomte [9] whilst the fact that equivalence classes of differential 

star products are parametrised by a series of elements in the second de Rham cohomology 

space of M appeared first in Nest and Tsygan [201, in Bertelson et al. [3,4] and in Deligne 

[6]. In the first two cited papers, the correspondence relies on the geometrical construction 

of a star product by Fedosov [10]; Fedosov takes a symplectic connection, extends it as 

a connection in the Weyl bundle whose curvature lies in the centre and builds from this a 

star product whose equivalence class is determined by the cohomology class of this central 

curvature. The classification then depends on showing that every differential star product 

is equivalent to a Fedosov star product. 

In his paper, Deligne defines two cohomological classes associated to differential star 

products on a symplectic manifold. The first class is a relative class; fixing a star product on 

the manifold, it intrinsically associates to any equivalence class of star products an element 

in H2(M; ~) [v]  (i.e. a series of elements in the second de Rham cohomology space of M). 

This is done in Cech cohomology by looking at the obstruction to gluing local equivalences 

(and is thus a globalisation of the old step by step techniques which showed that, at each 

order in the parameter, equivalence classes were parametrised by H 2 (M; ~)). 

Deligne's second class is built from special local derivations of a star product. The same 

derivations played a special role in the first general existence theorem 19] for a star product on 

a symplectic manifold. Deligne used some properties of Fedosov's construction and central 

curvature class to relate his two classes and to see how to characterise an equivalence class 

of star products by the derivation related class and some extra data obtained from the second 

term in the deformation. We do this here by direct methods. 

The content of our paper is as follows: 

Section 2 includes definitions of star products and equivalence on symplectic manifolds 

as well as a brief study of the differential Hochschild cohomology of the algebra of smooth 
functions on a manifold. 

Section 3 collects some basic results on the topological conditions for the equivalence of 
two star products. We determine when a self-equivalence is inner and what are the v-linear 
derivations of a star product on a symplectic manifold (M, oJ). 

Section 4 describes the relative Cech cohomology class introduced by Deligne as the 

obstruction to piecing together local equivalences between two differential star products on 
a symplectic manifold. 

Section 5 describes the intrinsic derivation-related Cech cohomology class associated to a 
star product; it is obtained by comparing local "v-Euler" derivations of this star product. The 
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relation between the relative class of  two star products and their intrinsic derivation-related 

classes is found. 

Section 6 introduces the characteristic class, defined from the intrinsic derivation-related 

class and the second term of the detormation. We show directly some equivariance properties 

of this class (relative to diffeomorphisms and to changes of the deformation parameter) and 

the tact that it characterises equivalence classes of star products. The proof of the fact that this 

class is the same as Fedosov's central curvature class is not included in these notes, see [6]. 

Section 7 includes the De Wilde proof [7] of the existence of a star product on anx. 

symplectic manifold. To whit a simultaneous construction of a star product and a tamil,~ 

of local v-Euler derivations of it yielding a given intrinsic derivation-related class. This 

employs the techniques of the previous sections, relining the Neroslavsky and Vlassov [ I t)l 

step-by-step techniques to apply to the De Wilde-Lecomte proof [9]. 

Section 8 gives the first and second differential cohomology space for a star-deformed 

associative algebra viewed as an ~!  vii-algebra. In particular, it gives an elementary proof 

of  the fact that the second differential Hochschild cohomology space for a star-detbrmed 

algebra (C- ' - (M)[v] ,  , )  is isomorphic to ZZ(M: ~) ~ vH2(M:  R)~vD, where Z~-(M: [~1 

is the space of closed 2-forms on the manifold (see also [25]). 

Section 9 gives all automorphisms and derivations of a star product which are continuous 

for the v-adic topology: in particular, we show that a symplectomorphism of a symplectic 

manifold (M, w) can be extended to a v-linear automorphism of a given differential star 

product on (M. ~>) if and only if its action on H 2 (M: [~)ll v ] preserves its characteristic class. 

Section I 0 explains some of the steps to get from the Deligne's definition ofa  detormation 

[6] to the usual one considered in the first part of these notes. In his paper Deligne deduces 

this and other results from the algebraic geometrical approach to deformation theoD,: in these 

notes we give equivalent low-brow proofs based around partitions of unit)' and coverings 

by contractible Darboux charts to go between local and global structures. 

Let us close the introduction by emphasising that the results in these pages are not new, 

except for Section 9, and can be found mostly in [6]. We decided to write these notes in 

view of the large number of  people who asked for a written account of the seminar on 

the subject. The interest of  the presentation is that it is self-contained and the proofs are 

done in an elementary way. Similar presentations of some of this material exist: in particular 

De Wilde [7] and Karabegov [ 16] give purely Cech-theoretic accounts of Deligne's intrinsic 

derivation-related class (see Section 5) and De Wilde shows by (~ech methods how this class 

and a 2-form induced by the skew-symmetric part of the second term of the deformation 

characterise the equivalence class of the deformation. 

2. Preliminaries 

This section contains a basic introduction to the setting tbr the rest of  the paper. It in- 

cludes definitions of  star products and equivalence on symplectic manifolds as well as a brief 

study of the differential Hochschild cohomology of the algebra of  smooth functions on a 

manifold. 
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Definit ion 2.1. Let M be a smooth manifold then a symplectic structure on M is a closed 2- 

form o9 on M which is non-degenerate as a bilinear form on each tangent space. A symplectic 

manifold is a pair (M,  o9) consisting of  a smooth manifold M together with a symplectic 

structure o9 on M. 

Definit ion 2.2. Let (M, o9) be a symplectic manilbld then a symplectic vector field on M 

is a vector field X whose (local) flow preserves o9 or, equivalently, if 

~Xo9 = O. 

The Cartan identity for the Lie derivative yields 

Exo9 = i (X )  dw + d(i(X)og) = d(i(X)og) 

since o9 is closed. Hence X is symplectic if and only i f i (X)o9 is a closed I-form. 

Definit ion 2.3. If (M. o9) is a symplectic manifold then a vector field X for which i(X)o9 

is exact is called a Hamiltonian vector field. If u E C ~ ( M ) ,  then X ,  denotes the unique 

Hamiltonian vector field with 

i (X,)o9 = du. 

Obviously, the space of  symplectic vector fields modulo the Hamiltonian vector fields is 

isomorphic to the space of  closed 1-1brms modulo the exact l - lorms and hence to H I (M; R). 

Locally the Poincar~ lemma implies each symplectic vector field is a Hamiltonian vector 

field; as a consequence symplectic vector fields are also called locally Hamiltonian vector 

fields. 

Definit ion 2.4. If (M, co) is a symplectic manifold and u, v E C:~(M)  then the Poisson 

bracket of u and v is defined by 

{u, v} = X,,(v) = ogiX,,  X,,). 

The Poisson bracket makes C ~ ( M )  into a Lie algebra. The Poisson tensor A is the alter- 

nating 2-vector field with 

{u, v} = A ( d u  A dr ) .  

Remark 2.5. In coordinates the components A ij form the inverse matrix of  the components 

o9ij of o). The Jacobi identity for the Poisson bracket Lie algebra is equivalent to the vanishing 

of  the derivative do) or the Schouten bracket [A, A]. 

In what follows we shall consider deformations of  both the associative and Lie algebra 

structures of  real-valued smooth functions N = C ~ ( M ) ;  similar results hold for complex 

smooth functions. All  deformations considered will be formal in the sense that they will be 

defined on N~vJ  the space of formal power series in an indeterminate v with coefficients 

in N. Questions of  convergence of  these formal series will not be considered. 
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Definition 2.6. [2]. A star product on (M, o~) is a bi l inear  map 

x N ~ N~v] .  (u, v) ~ u * v = u *~ v = ~ v"C,.(u, v) N 
i s() 

such that 

• when the map is extended v-l inearly to NQv] x NUt'~ it is formally associative: 

(u • t') * u, = u * (v * u,): 

- (a) C . (u .  v) = uv,  (b) C t (u ,  v) - C l (v .  u) = {u, v}: 

- I * l l  = I t *  ] = 11. 

R e m a r k  2.7. In this definit ion we follow Del igne 's  normalisat ion for Ci ,  that its skew- 

symmetr ic  part is ~ {, }. In the original definition it was equal to the Poisson bracket. 

R e m a r k  2.8. Property (b) above implies that the centre of N~t ,L  when the latter is viewed 

as an algebra with m u l t i p l i c a t i o n . ,  is a sseries whose terms Poisson commute  with all 

functions so is an element  of  It~t,] when M is connected.  

Def in i t ion  2.9. If • is a star product on (M. w) then we definc the star commutator by 

I l l ,  U ] ,  = It * U - -  t '  * I I ,  

which obviously makes N~v]  into a Lie algebra with s tar  adjoint representation 

ad~u(v)  = [u. t,].. 

R e m a r k  2.10. Properties (a) and (b) of Definition 2.6 imply 

[ . .  v l .  = v{u. v) + . - .  

so that repeated bracketing leads to higher and higher order terms. This makes N~ ~,~ an 

example of a pronilpotent Lie algebra, see Section 4 for some consequences  of  this. 

Def in i t ion  2.11. Two star products • and . '  on (M. o~) are said to be equiwdent it" there is 

a series 

"I" = Id + v T,., 

I ' = ]  

where the 7; are l inear operators on N, such that 

T ( f *  g) T f  *' = Tg.  (I)  



352 S. Gutt, J. R a w n s l e y / J o u r n a l  o f  Geometr  3' and  Physics  29 (1999) 347 -392  

In studying star products on NOv] modulo equivalence we use the Gerstenhaber theory 

of  deformations [12] of  N which requires a knowledge of the Hochschild cohomology of  

N with values in N. So we begin by studying this. 

A p-cochain on N is a p- l inear  map from N × - - • × N (p  copies) to N. The Hochschild 

coboundary operator for the algebra N of smooth functions on a manifold M is denoted by 0: 

P 
(OC)(uo . . . . .  up) = ullC(ul . . . . .  up) + ~-~ ( -  l ) rC(uo  . . . . .  u,._ l u,. . . . . .  u t, ) 

r=l 

+ ( -  l ) t ' - I  C ( u o  . . . . .  up_ I )ut, .  

On 1- and 2-cochains 0 is given by 

( a F ) ( u ,  v) = uF(v )  - F(uv)  + F(u)v ,  

(OC)(u, v, w) = uC(v,  w) - C(uv,  w) + C(u, vw) - C(u, v)u,. 

A cochain C is called a cocycle if OC = 0, and a coboundao' if C = 0 B for some { p - l)-  

cochain B. A p-cochain C is called differential if it is given by differential operators on 

each argument and k-differential if the differential operators have order at most k. It is 

said to vanish on constants if it is zero whenever any argument is a constant function, l-  

differential cochains vanishing on constants are always cocycles. I-cocycles are derivations 

of  C ~ (M),  so are vector fields and hence are 1 -differential cochains vanishing on constants. 

The Hochschild coboundary operator sends differential cochains to differential cochains. 

Definition 2.12. The pth differential Hochschildcohomology o f  N is the l, space n~iff(N. N) 
of  differential p-cocycles  modulo differential p-coboundaries.  

If C and D are p-  and q-cochains,  respectively, then we can define a (p  + q)-cochain by 

(C ® D)(ul  . . . . .  up+ u ) = C(ul . . . . .  ut,) • D(up+l  . . . . .  up+q). 

0 acts as a graded derivation 

b)(C ® D) = OC ® D + ( - I ) P C  ®OD.  

If D is a differential operator of  order k, then we may view it as a k-differential l-cochain. 

For a vector field X we have OX = 0, and i fk  > 2 a repeated application of  Leibniz" rule 

then shows that 0 D is a bi-differential operator of  order k - 1. 

We define the support supp C of a cochain C to be the union of  the supports of  its 

coefficients when written in coordinates. 

P ropos i t ion  2.13. I f  C is a l-differential p-cochain on R n and A is its alternating part 

then C = 0 B + A where B is 2-differential, and determined by C so that supp B C supp C. 

Proof If C is a I-differential p-cochain vanishing on constants, then C has the form 

8Ul Ouj, 
C(ut . . . . .  u l , ) =  ~ Ci. i t , 

li ..... i t, " .... OXi~ ~ f i  I 
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where the coefficients are given by 

Ci l  ...... ,, : C ( x i l  . . . . . .  r i l , ) .  

I f  cr is a permutation o f  { 1 . . . . .  p} and C a p-cochain then we set 

(a • C)(ul  . . . . .  u v) = C ( %  ~ l~  . . . . .  u~ ~t,~) 

which is an action on cochains. It is not, however, compatible with the Hochschild 

coboundary. 

If r is a transposition of consecutive integers, say the interchange of i and i + 1 and C 

a I-differential p-cochain vanishing on constants then we define a (p - l)-cochain q>r C~ 

by 

02lIi 
~ r ( C ) ( u l  . . . . .  u / , - I ) = ( - l )  i Z C l u l  . . . . .  u i  I , A r , X , . U  i - I  . . . . .  U l , _ I ) . oX , .C )X , .  

r.~" 

Then, using the Leibniz formula for second derivatives and the derivation property of  C in 

each argument, a straightforward computation shows that 

0¢'~(C) = C + r • C. 

If ri and r2 are each transpositions of consecutive integers then we have 

3(~r~ (r2 • C) - ~r_, (C)) = C - f i r2 -C.  

It is clear that if we keep composing such transpositions we build up any element rr of the 

symmetric group and we manufacture a 2-differential (p - 1 )-cochain q3,, (C) which is com- 

pletely determined by C once we fix a decomposition of cr into a product of transpositions 

of consecutive integers and 

~¢~, (C) = C - s i g n ( a ) ~ .  C. 

If we set 

then 

I 

o 6 S/, 

1 
C = ;)@(C) + ~ .  E sign(cr)a • C 

E S l, 

so that C is cohomologous to its skewsymmetric part. 

Note that the explicit nature of ¢' means that supp ~ ( C )  C supp C. '± 

Proposi t ion 2.14. I f  C is a differential p-cocycle on C ~" (R n ) then there is a differential 

( p - 1 )-cochain B and a skewsymmetric  l-d(fferential p-cocycle A with C = 0 B + A. I t" 
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C vanishes on constants then B (and hence A) can be chosen to vanish on constants. We 

can choose B and A so that supp B and supp A are contained in supp C. 

Proof Any I-cocycle is a vector field so the result is trivially true lbr p = 1. 

Assume the result true for r -cocycles  with r < p and let C be a differential p-cocycle  

with p >_ 2. Consider C(ul . . . . .  up) as a differential operator in ul .  Suppose it has order 

k > I then we shall show that we can subtract a coboundary to reduce the order. An 

induction then shows the order can be reduced to I. 

We consider the terms of  highest order in u j 

0kut Dq ..... it`(u . . . . . .  u t , ) + . . .  5-" C(ul lip) 
"OXil "'" ~)-ri~ il ..... it, 

where the Dil ..... it̀  are (p  - l)-cochains,  symmetric in il . . . . .  ik. In other words, in multi- 

index notation i = (il . . . . .  ik), 

C :  Z Oi @ Di "+.. .  
lil=k 

It follows from the derivation property with respect to tensor products above that 

: - S Oi ~ O D i  -q-... OC 

iil:k 

so that, when C is a p-cocycle,  the coefficients of  the highest order derivatives of  u t are 

(p  - l )-cocycles.  By induction D i ~- OEi q- Fi with Fi a skewsymmetric l-differential 

cocycle and supports in supp C if needed. Set 

G = Z Oi ® Ei  

./1=/, 

then an easy calculation gives 

c'dc=f c - k - O G =  Z O i @ f i  + H  

Iil=k 

where H only has terms involving derivatives of  the first argument of  order strictly less than 

k and C '  is still a cocycle. 

Taking the coboundary of  this equation we have 

O =  ~_~ ~(Oi) ® Fi + OH, 
tl:k 

and since O(Oi)(u, v), for [i] : k, only has t e r m s  Oi,uOi,,o with Ii'l + Ii"[ = k and both li'], 

Ii"l non-zero, the highest order terms in the first argument which can occur are of order k - 1 

and these terms in O(Oi) ® Fi will be of  order I in the second and remaining arguments. So 

the leading terms in O(Oi) ® Fi are of  multi-order (k - 1, 1 . . . . .  1). We examine how such 

terms can arise from OH. 
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If we expand H = E i l , . . . i l ,  I Hil . . . . , t ,  i~},l ~ " '  ® cq'i r I" where each i,. is a mult i index 

and the coefficients are symmetr ic  in each mult i index separately, then 

b}H-- -  ~ H/,....,,, , Z ( - I ) " - I ~ ) i , ® . . . ® / ) ( ~ ) , , ) . . . ~ ) , , :  , 

I I . . . . i ; ,  I r 

and so terms o f  o rder  (k - I.  I . . . . .  1 ) can o n l y  come f rom labels { i l  . . . . .  ir  . . . . .  i l, I } 

where  I i l  l - -  k - 1, exac t l y  one m u l t i i n d e x  i,. has Ii,-i --  2 for  some r > 2 and al l  o ther  

mu l t i i nd i ces  have length  1. 

Thus.  i f  we  take the terms o f  o rder  (k - 1. 1 . . . . .  1 in the equa t ion  and wr i te  out al l  

mu l t i i nd i ces  fu l ly ,  we  have 

k F l i l " i ~  til~.i'.  ..... il, + 2 H ( i l " ' i ~  ,I.Ihj_'! ..... jl, + ' "  + 2 H q i l . . i ,  I~.J, ..... I/,, li,.,~ = 0  

with the H terms symmetr ic  in the bracketed pairs of  indices. Denot ing by S t, the group of 

permutat ions of ( 1 . . . . .  p )  and e (a )  the signature of  a permutat ion a ,  if we ant isymmetr ise  

over the last p indices, all the H terms drop out and we ~,,et a relation among the F ' s  

~-'-~ ~(cr)F(i,... i~ t i . , ,L,~.. i~, '_ ...... i . . t , ,  = 0 

which implies,  since F is skewsymmetr ic  in its last p - 1 indices, 

P 

where ^ denotes omiss ion and, since F is symmetr ic  in its first k labels. 

k p 

k F u ,  "','.i_" ..... i,, = ~ Z ( - l ) ' F u , . . . ~ , . . . i , , , , . i , . i . _ . . . . i " ~ . . . . i , ,  • 
; ' - I  ~=2 

Thus  

where 

/) 

(k  + p - 1 ) Fl i  ,...i~ I. i'_ ..... h, = ~ ~ (  -- l )~ K i l  . . i t .  i,. b_. . I~,.... it, 

r=l  

is symmetr ic  in its first k + 1 indices. 

One  can write 

+ Fii ,  ...i, ~.j,. h. . . .  i~,.., i,, 

(k + p - I )FIi  , ik).i2 ...... it, 

P 

~_~(-- i I ...i~ . j ,  . i . . . . . j  . . . . .  j , .  
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( - -  l )s - 2  Ki] ...i~, i2.J.~ ..... jp + Z ( -  1 ) " - t  ¢ K =/ . . . ,  ( -  1 )" " " i l '" ik , j l .J2 ..... Jr I,Jl ..... Jl' 
=2 t =3 

" 1  

+ Ki t i t ,  j, _ i. J'- ..... Jr .'~l. j ...... j j, ) ] 
i 

= ( P  --  l )Kir '" i~ 'J2"J3 ..... Jr' 

P 

+ Z ( - l ) t ( p  + 1 - t)(Ki,...i~.~,.j: ...... i, [.~,.....j,, + Ki,...it.j, ,42 ..... J~-~.; ...... J,,) 
t=3  

so that the terms corresponding to the first line in the last equation coincide with the terms 

of  order k in the first variable of  the coboundary of a constant multiple of 

Kil ...i~.j2.j3 ..... jpOil ...i~j2 ® Oj~ ® "'" ® OjI, 

and the terms corresponding to each summand in the second line in the last equation coincide 

with the terms of order k in the first variable of  the coboundary of a constant multiple of  

(K i t ' " i k , j t . J2  ..... Jr t .~,. . . .Jp "F Kit . . . i~ , j ,  . i . j2 ..... J~-t .J ...... Jl, ) 

xai ,  i~ ®a./2 ® . . - ® a j , _ , j ,  ® . . . ® a j p .  

Combin ing the above results, we can bui ld a p - 1 cochain G'  so that C - O(G') is a mult i  

dif ferential operator w i th  terms involv ing derivatives of  the first argument o f  order less than 

k. Iterating, we can reduce the order in the first argument to 1. 

Now assume that 

C =  -~xixi ® D i  
i=1 

then 

?)C = - ~xi ® ODi 
i=l  

so C being a cocycle is equivalent to the Di being cocycles. In this case we have Di = 

OEi + Fi with Fi l-differential and 

S o S o C + O -~--xi ® Ei = -~--xi ® Fi 
i=l  i=l  

and the RHS is now I-differential in all arguments. 
Using the previous Proposition, this l-differential cocycle is equal to its total skewsym- 

metrization plus a coboundary. 
Hence the induction proceeds. 

T h e o r e m  2.15. Every' differential p -coo 'c le  C on a manifold M is the sum o f  the cobound- 

at3' o f  a differential (p  - I )-eochain and a 1 -differential skew-swnmetric  p-coeycle A: 

C = O B + A .  
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If'C vanishes on constants then B can be chosen to vanish on constants also. 

357 

ProoJ~ Take a locally finite covering {Uz };.cA of M by charts with a subordinate partition 

of unity p ; .  Then any p-cocycle  C is a locally finite sum of  p-cocycles  

C = ~ . , p )  C. 
~.~.~ 

with supports in charts. By Propositions 2.13 and 2.14 

P~C = aB;, + Az, 

with the supports of B~. and A;. in U~. It follows that the sums 

B = ~-~ B~, A = ~--~ A ~. 
).~ A ~.E A 

are locally finite, so globally defined, and C = / ) B  4- A as required, i. 2 

Coro l l a ry  2.16. Hdlt.f(N, N) = F( ]V '  TM) .  

Proof. It remains to show that the alternating part o f a  coboundary is zero and we leave this 

to the reader. [3 

R e m a r k  2.17. This is a smooth version of  the Hochschi ld-Kostant-Rosenberg theorem 

[15]. It was first mentioned in the context of smooth functions by Vey [24] who considered 

the proof well-known. Other classes of cochains than differential have been considered, 

such as distributional cochains, with essentially the same result [22]. But for completely 

general cochains the full cohomology is not known. 

R e m a r k  2.18. The proofs of the above results work globally on a manifold if we use a 

connection to write the cochain in terms of its symbol and do the induction with respect to 

the degree. Then we see that all the choices can be made explicit, and the inductions are 

finite, so the method can be made constructive. 

R e m a r k  2.19. In the symplectic case the 1-differential skew-symmetric p-cocycle  A in 

Theorem 2.15 can be rewritten in terms of  the Hamiltonian vector fields and a smooth 

p-form c~ as 

C(ul . . . . .  u/,) = (b)B)(ul . . . . .  ul,) +a(X , , ,  . . . . .  X,,,). (2) 

Defini t ion 2.20. A star product • on (M. ~o) is called d(fferential if the 2-cochains C,-(u. t,) 

giving it are bidifferential operators. 

Definition 2.21. Two differential star products • and , '  on (M, w) are said to be differen- 

tially equivalent if there is a series 
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"k. 

T = Id + Z v" Tr. 

where the Tr are differential operators on N, such that 

T ( f *  g) = T f , '  Tg. (3) 

In fact for differential star products there is no difference between the two notions of 

equivalence as the following result shows [6,18]: 

Theorem 2.22. Let • and *' be differential star products and T (u) = u + Y~,,.-: i v" T,-(u ) 

an equivalence so that T (u * v) = T (u) *' T ( v) then the T~ are differential operators. 

Proof Suppose we know that the first k operators Ti . . . . .  Tk in T are differential operators 

and set T'(u)  = u + )--~-I <r<k v"T,.(u). Then T" = T ' - I  o T is an equivalence between 

the differential star products • and , " ,  where u , "  v = T ' - I ( T ' ( u )  , '  T ' (v)) .  T"  has 

the form T"(u)  = u + vk+tT"k+i(u)  + . . .  Taking the terms of degree k + 1 in u * v = 

T " - J ( T " ( u ) * " T " ( v ) )  we see that (OT"k+i)(u, v) = T"k,-i ( u ) v+uT"k  4-t (v)-T"k~-I  (ttV) 

is a bidifferential symmetric 2-cocycle. By Theorem 2.15 3T"~,  I is the coboundary of a 

differential 1-cochain plus a l-differential skew-symmetric cochain. Since both exact terms 

are symmetric, the skew-symmetric term vanishes. Thus there is a differential l-cochain B 

such that 0(T"k+i - B) = 0. It follows that X = T"k . t  - B is a derivation of N and hence 

is a vector field. Thus T"k+ t = B + X is differential. T~+l is a combination of Tt . . . . .  Tk 

and T"k+l and hence is also differential. It follows now by induction that T is differential. 
[] 

A simple application of Theorem 2.15 is as follows: 

Proposition 2.23. A differential star product is equivalent to one with linear term in v given 
by Iv{u, v}. 

Proof. Let u • v = uv + vCi (u, v) + .. • be a star product then Ct (u. v) is a Hochschild 

cocycle with antisymmetric part given by IV {u, v}. By Theorem 2.15 Ct (u. v) = ½ {u. v} + 

uB(v)  - B(uv)  + B(u)v  for a differential l-cochain B. If we set T(u)  = u + vB(u)  and 

u *' v = T ( T - t ( u )  • T -  t (v)) then an easy calculation gives u , '  v = u v + IV v{u, v} + . . -  

T is obviously a differential equivalence so that *' is differential. 

3. Local equivalences and v-linear derivations 

In this section we collect some basic results on the topological conditions for the equiva- 

lence of two star products [18]; when is a self-equivalence inner; and what are the v-linear 

derivations of a star product on a symplectic manifold (M, w). 
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P r o p o s i t i o n  3.1. Let • and , '  be m'o differential star products on (M. w) and suppose that 

H 2 ( M :  ~)  = 0. Then there exists a local equivalence T = Id + Y~-k::l t'k 7~ on N~v] such 

that u , '  v = T ( T  lu * T -I v ) f o r a l l  u. v c N l v ] .  

Ptvof  Let us suppose that, modulo  some equivalence,  the two star products • and *' coincide 

up to order k. Then associativity at order k shows that Ck - C~ is a Hochschild 2-cocycle 

and so by (2) can be written as 

(('k - C~}(u. v) = (~tB)(u, v) + A(X,, ,  X~ ) 

for a 2-form A. The total skew-symmetr isa t ion of the associativity relation at order k - I 

shows that A is a closed 2-form. Since the second cohomology vanishes.  A is exact, A = d F.  

Transforming by the equivalence defined by Tu = u + v ~- i 2 F ( X ,  ), we can assume that the 

skew-symmetr ic  part of  Ck - C~ vanishes. Then (Ck - C~ ) (u, v) = (O B) (u. v ) = u B( v ) - 

B(uv) + B(u)v,  where B is a differential operator on N and using the equivalence defined 

by T = / ~ v ~' B we can assume that the star products coincide,  modulo an equivalence,  up 

to o rderk  + 1. 

This gives the inductive step, and since two star products always agree in their leading 

term, it follows, by induction,  that they are equivalent.  2; 

C o r o l l a r y  3.2. Let • and , '  be two differential star products on {M. w). Let U be a con- 

tractible open subset of  M and N t  = C ~ (U) .  Then there exists a local equivalence 

T --= ld 4- y~/,_.~ vkT~ on NL'~v] thatu . '  v = T ( T - I u  * T - l v ) . i b r a l l u ,  v 6 Nt,~t'n. 

Pn~of A contractible open set has vanishing cohomology groups and a differentiable star 

product on M restricts to give a star product on any open set U of M, so Proposit ion 3.1 

can be applied. [l 

P r o p o s i t i o n  3.3. Let • be a differential star product on ( M. w) and suppose that H I ( M: ~ ) 

vanishes. Then any self-equivalence A = Id + Y~k , Ivk A~ of* is inner: A --- exp ad~ aJ}~r 

some a E N~t,].  

Pn~c~ We build a recursively. The condi t ion A(u • v) = Au • Av implies (taking the 

coefficient of v) that A i (u v) + C i  (u, t,) = A I (u)t, + u A  i (v) +Ci (u. v) so that A I is a vector 

field. Taking the skew part of  the terms in v 2 we have that A I is a derivation of the Poisson 

bracket. It follows that A l (u)  = {ao, u} for some function ao. Then (exp - ad .  a~l ::: ,4 = 

ld +O(  v 2) as an easy calculat ion shows. Now we proceed by induction.  

Suppose we have found a ~k-I~ = a,I .-- . . .  + v~- lak I such that 

A ' = ( e x p - a d . a  ~ k - i ) ) o A  = l d + t  ,k-l A't ,_i + O(v ~ " 21 

then we can repeat the argument  of Proposit ion 3.3 since A' also preserves , .  The terms 

of degree k + 1 show that A'k_ ~ is a vector field and the ant isymmetr ic  part of  the terms 

of degree k + 2 show that it is a Hami l ton ian  vector field A ' t ,  i (u)  = {a~. u} for some 
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function a~. Taking a ~k~ = a ck - l )+  v k ak gives a formal function with (exp - ad .  a (k)) o A = 

Id + O ( v  k+2) completing the induction step. [] 

Again this yields directly: 

Co ro l l a ry  3.4. Let • be a differential star product on (M,  w). Let U be a contractible 

open set o f  M and Ntj = C vc (U). I f  A = Id + Y~k>l vkAk is a formal  linear operator 

on Nc,~v] which preserves the differential star product *, then there is a E Nc,~v] with 

A = exp ad,  a. 

P ropos i t ion  3.5. Any v-linear derivation o f  a differential star product • on (M,  w) is o f  

the form D = Y~4 >_o vi Di where Di corresponds to a symplectic vector field Xi and is given 

on a contractible open set U by 

1 u 
Oiulu  = - ( f i  * u - u *  f i  U) 

V 

i f g i u [  U ---- {~u.  u}[//. 

Proof  Assuming a derivation D is of  the form Du = v k D'u + • • • (where k ___ 0), the 

equation D(u • v) = Du • v + u • Dv  at order k in v yields D'(u .v )  = D'u .v  + u .D 'v ,  so 

D'u = Xu,  where X is a vector field on M. Taking the skew part of  terms in v k+l, we have 

that X is a symplectic vector field on M, i.e. that F-,xoJ --- 0. In that case, one can write, on 

a contractible open set U, 

Xult,, = { f u ,  u}lu,  where f u  E C~c(u) .  

Since the C,. vanish on constants for r > 0, one can globally define E • N ~ N l v ]  by 

1 
E ( u ) = - ( f U  , u - u ,  f U )  

V 

and by associativity of  *~, E is a derivation of  the star product. Notice that D - v k E starts 

with the terms of  order k + 1. An induction gives the result. [] 

Co ro l l a ry  3.6. With the same notation as in Corollary 3.4. any local v-linear derivation 

Du o f  a differential star product • on Nu ~v] f o r  a contractible open set U is essentially 

inner." Du = ( l / v )  ad,  du fo r  some du E Nu ~vB. 

4. The relative class 

We shall describe here the Cech cohomology class introduced by Deligne when one 

considers two differential star products on a symplectic manifold. It is built from local 

equivalences between those star products, using the property that any local self-equivalence 

of  a differential star product is of  the form exp ad .  a for some locally defined a. 
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For convenience, we write the composition of automorphisms of the form exp ad. a in 

terms of  a. In a pronilpotent situation this is done with the Campbell-Baker-Hausdorf f  

composition which is denoted by a o. b: 

I 
/ , b  

a c~. h = a + / ¢ (exp  ad. a o expt ad. b)bdt ,  

(~ 

where 

z log(z) , ~  ( ( - 1 ) "  ( - 1 ) " - ' )  

Notice that the formula is well defined (at any given order in v, only a finite number of 

terms arise) and it is given by the usual series 

a o. h = a  + b  + ½[a,b].  + ~ ( [ a .  la, b ] . l .  + [ b ,  lh. a l . I . ) ' "  

The following results are standard [5]. 

Lemma 4.1. 
- o. is an associative composition law; 

- expad . (a  o. b) = expad,  a o expad,  b; 

- a o. b o. ( - a )  = exp(ad, a) b; 

- - ( a  o,  b) = ( - b )  o ,  ( - a ) ;  
d I 1 - e x p ( -  ad. a) 

I ( - a )  o,  (a + tb )  = 
dt i) ad. a 

(b). 

Let (M. w) be a symplectic manifold. We fix a locally finite open cover H = {U,,}~cl 

by Darboux coordinate charts such that the U~, and all their non-empty intersections are 

contractible, and we fix a partition of  unity {0,, },e t subordinate to H. Set N,  = C ~" ( U,, ). 

N,~,~ = C x ( U ~  N Ut~), and soon.  
Now suppose that * and . '  are two differential star products on (M. oo). We have seen 

that their restrictions to N,,[v]  are equivalent so there exist tbrmal differential operators 

T~, : N~,[t,~ ~ N~,nv~ such that 

T,(u * v) = T, (u)  *' T,~(v). u. v ~ N~,~vl. 

On U, N Ut~, T~ -I o 7],, will be a self-equivalence of • on N~,~v]  and so there will be 

elements tt~,~ = - t ~  in N~,t~[v] with 

T~ I 3 7~, = exp ad. tt~,. 

On U,~ n U/~ N U× the element 

t ; , l~ = toy  o .  t),l~ o .  timex 

induces the identity automorphism and hence is in the centre R [ v ]  of  N,,#r ~va. The family 
of  t),#,, is thus a (~ech 2-cocycle for the covering/,4 with values in ~ [ v ] .  The standard 

arguments show that its class does not depend on the choices made, and is compatible with 
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refinements. Since every open cover has a refinement of  the kind considered it follows that 

ty~, determines a unique (~ech cohomology  class Itv/s,~] ~ H 2 ( M ;  ~ ) [ v ] .  

Definition 4.2. 

t ( , ' .  *) = [ t ; , /~] E H 2 ( M ;  [~)[v] 

is D e l i g n e ' s  relat ive  class.  

Propos i t ion  4.3. i f . ,  *', *" are three  di f ferent ia l  s tar  p roduc t s  on ( M .  w)  then 

t (*". *) = t ( . " ,  *') + t(*'. *). (4) 

P r o o f  Let the local equivalences between . '  and * be T,~ and between , "  and , '  be S~. On 

U. (q U~ let 

T f  I o 7;, = exp ad,  tl~c,, S~ t o Sc~ = exp ad~, s ~  

and set V~ = Sc, v T,~ which are local equivalences between . "  and , .  Then 

V~ - I  c V~ = expad.(tt~,~ o. T f l ( s r ; ~ ) )  

and hence we can choose 

t,t~. = t /~  o .  T f l ( s / ~ , ) .  

Observe that t,t~. = -t,,a~ since 

tt~,. o.  T f  ] (st~,~) o.  ( - t~ , , )  = exp ad.  ttj,~ ( T f  t (st~,~) ) 

= TT~T.TS -j (s~)  = -Ti~(s ,~):  

then, on U~, 7~ Ut~ ¢q U~,, we have 

7~71(s,,r ) o .  tyt~ = t,,,t~ o .  (-t×t~ ) o .  Tv-J ( s~v ) c .  t×t~ 

= tr~ o.  exp ad.  - t × ~ ( T , f ] ( s ~ ; , ) )  

= t , / l ~  o.  (7~ -~ o T;, o T r  ~)(s,,;,) 

SO 

the last two steps 

=t, , ; ,  o.  T f  I(s,~;,) o.  t;,t~ o.  T~-i (s×t~) o.  t/~,, c .  T~-' ~,~) 
tot), o .  ly[~ o .  tl4c~ o .  Td -I (set), o .  syfi o .  s~c~) 

= t,/i~ ~ o .  T f  t (sy/s~) 

= tyl~ ~ o .  S>,l~ U 

following since s.//~, is central. Iq 
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P r o p o s i t i o n  4.4. The class t ( *', *) vanishes i f  and only i f  the two differential star products 

are equivalent. 

Pn~ql: If * and *' are equivalent ,  the equivalence being defined by T, we can choose  the 

restr ict ion of  T to U,, for T,~ and the class obvious ly  vanishes. 

Now consider  what happens  if the class t l * ' .  *t vanishes.  Then we can modify  t:;,, by 

addi t ion of  a central e lement  (and so not changing its adjoint  action) so that trr~,, = I). 

But then t~,t~ is a cocycle  and hence a c o b o u n d a ~ ,  so there arc functions t,, 6 /'v',,l[ v H with 

t;,,,~ = ( - - t , , )  o ,  t ~ .  

This is shown by the fo l lowing standard inductive argument.  At order  zero, the cocyclc  

condi t ion is 

t l )  11 t 0 
u~, + t;,t~ + ,~,, = O. 

Defining 

¢; = 
(9 

yields  

.Iol 

up to order  one in v. If there is a solut ion 

tl/`} = Z r r 12 let ~t 

r z / `  

so that 

up to order  k + 1, then the cocyc le  

= tltl I/`} Cyt~ - -  ;, o .  t),t~ o .  t 

has first non-vanish ing  term of  order  k + 1 with 

c../`-I + / ` - I  /,4- = 0 .  

Defining 

k÷l  ~ '~ f4  C k+l 
t i~ = ~ vc, ~,i~ 

and 

{k-i] .IkJ + vk-I k-I 
t U ~ t~t let . 
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we have 

t r #  = (-t l~+l}) o ,  t~ {k+l] 

up to order k + 2 in v, hence the result by induction. Setting 

T'c~ = T,~ o exp ad. t~, 

we have T',~ = T ' f  on U,~ N U# and hence there is a global equivalence T'  on N with 

T'  = T'~ on U~,. [] 

Given a differential star product • we thus have a map from equivalence classes of  

differential star products to H2(M; 0~)0vU given by 

[*3 ~ t (* ' .  *) 

and we have just shown that this map is injective. 

Proposit ion 4.5. Fixing a differential star product . ,  the map from equivalence classes of  
differential star products to H 2 (M: •) [ v] given by 

[*'1 ~ t ( , ' ,  *) 

is surjective. 

Proof To see that the map is surjective we proceed in two steps. We first show that given 

a 2-cocycle t~,~, we can find t~,, ~ Nat~v] so that 

t×#~, = t,~ r o ,  t/# o .  t#,~. 

We then construct a differential operator T, on Uc, starting with the identity so that T#- t o 

T,, = exp ad, t#,~. 

For the first step. we use, as above, the fact that the sheaf of  functions is fine. At order 
zero. the cocycle condition takes the form 

t 0 0 t() 0 = O. 

We define 

0 Z Oyt(;[ ~c~ tic ~ = 

s o  that 

0 0 0 + t~u. t;,l~t~ = too, + ty~ 

Assume now, by induction, that we have tlklt~ such that tfi kl = - t  gkl,,t~ and 

= t {/"l tIkl tlk} o ,  o .  t),/~, "ey ;,/~ /~u 
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up to order k + 1. Let us define 

so that the coefficients "" ~ ),t~,~ are constants  Vr _< k. Note that in a non-commuta t ive  situation 

c is not necessarily a cocycle. Nevertheless the 3+1 :,/~, are completely skew-symmetr ic  in 

their indices since 

3+~ = tt ILl ILl)~-~ .,~-~ 
c ;,/~ ' tk~ o .  C7/~ ~, o .  l~/~ = ~ y/~t~ 

and 

.l~} tl,~ } o,  te/~ cyt~l~ = tl~y o, .{kl 

= o .  o .  ' , 

- {/,I .{k} . Ik l ,  
= - - ( I [ 4o ,  O ,  let;, 0,~ 17] ~ ) = - - ( - ' te ' t f l .  

Furthermore. it can be checked that 

(Cyflce o C3[~c t o Cgyc r 0 C3y[~) I ' - I  k±l  _ c k - I  .k+l ,k - I  

Hence, if we define 

and 

l L~-I ~ 1l k+l _ c k ~ l ]  
l ~  = Z...a 0 

t{ k+l } = t l t l  V k ~ l t l , - I  ~ /~ + /~  , 

then we have 

t l k t l }  .[k+l} l{k+l} 
t ) ,#u  : -~) ,  o .  tyl~ o .  f l tr 

.{k+l} t l k - l l  up to order k + 2, and ~t~,, = - ,#~ so the induct ion proceeds. 

For the second step, we need to find differential operators T,  on N , [ v ] .  starting with the 

identity, so that exp ad .  t~,  = T~- I o T,~. This, again, is a recursive argument:  Suppose wc 

have found T Ik~ such  that , G '  

T/~kl o e x p a d ,  t/~ o T~ k l - I  = ld + t , ~ S ~  + . . .  

then it is easy to see that St~a is a I-cocycle with values in the smooth differential operators 

vanishing on constants.  Since these form a fine sheaf, this l -cocycle  is a coboundary,  so 

there are differential operators S~, on N~,[v]  vanishing on constants  with S/~,~ -- S,, - St~ 

on U,~ A Ut~. Setting 

TIk~ I~ = (id + v t S ~ )  o T~ t~ 

we have 

TClk+II o e x p a d ,  tt~ e o T~ k+lJ- I  I d + v  t+l  ' = SI~,, + . . .  
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and the recursion proceeds. Having tbund such operators T~, we then twist • to yield , '  by 

defining 

u *' v = T~(Tc, I(u) * T~J(v))  on U~. 

From the way we constructed , '  it is easy to see that the class of , '  will be t ( , ' ,  , ) .  [] 

We summarise these results in a theorem. 

Theorem 4.6. Fixing a differential star product *. the relative class t ( , ' .  *) o f  any other 

differential star product , '  in H 2 ( M; ff~) ~ v ] depends only on the equivalence class of*'. and 

this sets up a bijection between the set o f  equivalence classes of  differential star products 
and H2(M:  ~)[vD. 

5. The intrinsic derivation-related class 

The addition formula of  Proposition 4.3 suggests that t ( , ' ,  , )  should be a difference of  

classes c ( , ' ) ,  c ( , )  c H2(M:  t~)llvB. Moreover by Proposition 4.5 the class c ( , )  should 

determine the star product • up to equivalence. As a step in that direction we consider 

an intrinsic class which is an obstruction to piecing together local derivations of  the star 

product. 

We retain the notation of Section 4 and continue to denote by/.4 the covering by con- 

tractible Darboux charts. 

Definit ion 5.1. Say that a derivation D of  N]v] ,  • is v-Euler on an open set U if it has the 

form 

D = v - - + X + D ' .  (5) 
;gv 

where X is conformally symplectic (/~xw = w) and D'  = )--~, _> j vrDtr with the D~ differ- 

ential operators on U. 

Proposition 5.2. Let • be a differential star product on (M. o2) then for  each Uc~ E 1.4 we 

have a v-Euler derivation D~ = t,(O/Ov) + X~ + D't, o f  the algebra (N~[v] .  ,) .  

Prooj2 On an open set in/I~ 2" with the standard symplectic structure .f2 denote the Poisson 

bracket by P.  Let X be a conformal vector field so 12x£-2 = .f2 and hence that the Poisson 

tensor P satisfies £ x P  = - P .  It follows that the power p r  of  P as a bidifferential 

operator satisfies f f . xP  r = - r P " .  The Moyal star product ,M is given by u ,M v = 

uL' + ~'~.,.;._l(V/2)r/r!pr(u, I.'). It is easy to see that D = v(~/Ov) + X is a derivation of 
,M. 

(U,,. w) is symplectomorphic to an open set in ~2,, and any differential star product on this 

open set is equivalent to ,M. We can then pull back D and ,M to U~ by a symplectomorphism 

to give a star product , '  with a derivation of  the tbrm v ( a / a  v) + xc,. If T is an equivalence 
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of * with *' on U`" then D~ = T - I  o (v('O/Ov) + X`')  c 7" is a derivat ion of  the required 

form. L: 

We take such a col lect ion of  der ivat ions  D`" given by Proposi t ion 5.2 and on U,, fl I 'r; we 

cons ider  the differences Dt~ - D`'. They are der ivat ions  of  • and the v derivatives cancel 

out. st) Dr~ - D`" is a v- l inear  derivat ion of  N~,t~ ~v]]. Any v- l inear  derivat ion is of  the form 

( I / v )  ad ,  d, so there are di~`" ~ N`'t~iv I with 

I 
D~ - D`" = - ad ,  dt~ . ,  (6) 

l '  

with dt~`" unique up to a central  e lement .  On U`" ¢q Ut~ (-1U~, the combina t ion  d`':, - d;,;~ ~d~, ,  

must  be central  and hence defines d×t~,, E [~[vl .  It is easy to see that d;,,~,, is a 2-cocvcle  

whose  (~ech class [d;,t~, 1 E H 2 ( M :  ~ ) ~ v ]  does  not depend  on any of  the choices  made. 

Def in i t ion  5.3. d ( , )  = [d},~`'] E H 2 ( M :  N)~v]  is Deligne 's  intrinsic derivat ion-Jrlated 

c lass .  

R e m a r k  5.4. In fact the class cons idered  by Del igne is actual ly  ( l / v ) d ( , )  but we prefer 

the present  normal isat ion.  De Wi lde  [7] and Karabegov [16] give purely (_'cch-theorctic 

accounts  of  this class. 

P r o p o s i t i o n  5.5. i f ' ,  and , '  are equivalent  differential star product.s" then d (*') = d l * ). 

Prm¢~ Suppose  T(u  • t,) = T ( u )  , '  T(v) ,  and we have chosen local v-Euler  der ivat ions 
t _ t 

D,, tor  • then we can take D`" = T D,, T i for • .  Then 

Thus,  for these choices  of  derivat ions,  d't~, = T(d,,` ' )  and so di ,~,  = T(d;,r~`') = d,,;~,, 

since the h igher  order  terms of  T are differential  operators  vanishing on constants.  I 

P r o p o s i t i o n  5.6. i f  d ( , )  = ~ ,  :.¢j v"d '  ( , )  then d ~ ( , )  = I ogl under the de Rham i somm-  

phism, and d I ( , )  = O. 

Proo f  For d °, cons ider  the terms of  degree  zero in (6) using (5) appl ied  to a function 

It E gt~ 

JA{)  II (Xt~ - X` ' )u  = ,~,/~. }. 

We set ~,, = i (X`')o) then dO,, --  o) on U~,. Hence  

(0~ - O`')(X,,) = o9(Xt~ - X`' .  X,,) 

= - ( X ~  - X` ' )u  = - { d ~ , .  u} = X , (d~` ' )  

so 0f - O "̀ = d(d~`') on U`" 7/Ut;. Hence d°×flu is the (~ech representative corresponding 

with the closed 2-form o9 under the de Rham isomorphism. Thus dU(,) = [o9]. 
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For d I we first observe that by Proposition 5.5 we can replace • by any equivalent star 

product. In particular, we may assume that • has Ci (u, v) = 1 {u, v} and the antisymmetric 

part C~- of  C2 is given by a closed 2-form A, C ~ ( u ,  v) = A(X , , ,  X,  ). Now 

ad.  d t~u  = d l~  • u - u • d ~  

= v{d~ , ,  u} + 2v2C2(d l~ , .  u) + . . .  

2 I 2 C ~ ( d ~ , ,  u)) + O(v 3) = v { d ~ ,  u} + v ({dt~ ~, u} + _ 

for u E N~t~. Equating terms of degree one in (6) we have 

(D~" - v ~ " ( ' ) ' m =  {d~,,, u} + 2C~_(d~a,u)  

= {d~,, u} + 2A(Xj,~o, X,,). ( 7 )  

If we take the terms of  degree one in v in Dc~(u * v) = Dc,(u) * v + u • D a ( v )  we see at 
FI(I) once that ~, ,  = Y~ is a vector field. If we take the antisymmetric part (in u and v) of  the 

terms of  degree two in v we obtain 

2 C ~  (u, v) + X ,~(Cz  (u, v))  - C~  (Xc,(u) ,  v) - C j  (u. X,~(v)) 

~ID( I ) (u ) ,u }  + I{u .  D~I ) (v )}  - I D( I )  = - .  ,, _ _~ ,, ( { u ,  v}), 

which can be rewritten in terms of  the closed 2-form A as 

2 ( £ x . , A ) ( X , ,  Xv) = {Y,~(u), v} + {u. Y~(v)} - Y~({u. v}). (8) 

If we let B~, = - i ( Y c , ) w  then B~,(X,,) = Y~(u) so the right-hand side o f (8 )  becomes 

- X , . ( B ~ ( X , ) )  + X u ( B ~ ( X e ) )  - Ba(X{,.~. l) = dB~(X, .  Xv) 

SO 

E x , , A  = I dBe,. 

Since A is closed, then from Cartan's identity, i (Xc,)A - ~ Be, is closed on Ua and hence 

exact. There is thus a smooth function f~, on U¢, with 

i (Xo,)m - ½Su = d f v , .  

Substituting into (7), and using Xa~ ~ = Xt~ - Xu we have 

(YI~ - Y~)u = {d~e ,, u} + 2A(Xl~ - X,~, Xu)  

= {d~,~. u} + B z ( X , , )  - Bc,(X,,) + 2 d f ~ ( X , , )  - 2 d f ~ ( X , , ) .  

Since YZ (u) = BZ ( X , ) .  these terms cancel leaving 

{dr~ ~,  , , )  = 2 { J ~  - L , .  u )  

and hence the class d l ( , )  = O. [] 
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Lemma 5.7. Consider  two differentiable s tar products  * and *' on ( M.  co) with local equiv- 

alences To and local v -Euler  derivat ions Do f o r  • .  Then D' o = To o D~ e T[~ t are local 

v-Euler  derivat ions f o r  . ' .  Let Dr3 - Do = ( 1 /v)  ad. d13 ~ and T~ -t  o To = exp ad, t/~, on 
t 

Uo N Uiq. Then D'~ - D'u = ( l /v )ad , ,d iq  o where 

( !  - exp ( -  ad* M3))  
' o D~, t~qq. dt~ o = TiM/qo - v T/q o ad, tojq 

Proof  Since, for any (local) derivation D and any (locally defined) t ~ N~vl], one has 
D ,: ad. t = ad . (Dt )  + ad, t o D so that inductively 

H -  I 

Z ad" - I -i D o a d  ° t  = a d ~ t o D +  adi. t o a d . ( D t ) o  . t 
i = 0 

and 

e ad. t o D o e a d ,  t = D + e _ a d . t _ _ d  e a d , l t _ ~ l ) t  ~ 
d s  I o 

= O +  a ~ a ~ - ~  ,] ad. Ot 

( ( l - e x p ( - a d ,  t ) ) o t )  " 
= D + ad, ad. t 

One gets 

O ~ -  O ' ~ = T ~ o O B o r f  I - T ~ o O , x o r f  t 

T~ o (O~ - (T,s-t T~.)c. Do o ( T f  i T~)) o T~ -I 

= T/~ o (D~ - De) o T f  1 

- T / q o  ( [ (  l - e x p ( - a d * t ° 1 3 )  ) DMor3])  o ad. tot3 

( !  ( I - e x p ( -  ad* '~t3)) Dotot3) ° T~ ' 
= Tt~ o ad. du° - ad, tof 

1 
= ad., vd~o . 

for the above defined d' 
r i o '  

t ! Notice that dot ~ = -d/~,~. Indeed, 

( l - exp( -  ad* t t ~ ) )  
= -- o D13t/3 o d'ol~ Todof v T~ o ad, tt~o 

( l - e x p ( -  ad* trio)) 
= - o Dt~tj3 o Todo~ v T ~ (T f f  I T,~) o ad, tgo 

exp(ad, t/~o) - 1 
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( 1 - e x p ( - _ a d .  tcqD ~ DM~ fl 
= T~,da~ + v T/~ ad, tat~ / 

+vTt~ ( I - e x p ( -  ad* t"~) ) ( D~ - tc, t~ 

Since v(Dt~ - Da)tal~ = ad.  d/~atat~ = - ad. Gt~dt~a, the above gives 

( l - e x p ( -  ad" Gt~ ) ) DM,,fl 
d'~fl = T~d~fl + vTfl ad. t,y/~ 

-T~di~,, + T~ exp(ad, t/~a)d~,~ 
! ! 

= -dfla + T~,d~,lq + T/qTl~lT~,dfi¢, = -dt~ a. [] 

L e m m a  5.8. In the situation of  the lemma above and with the same notation 

dr~c, = T~ d r ~  + v 2 t×~ . 

Proof We shall use the formula for the derivative of the exponential map: 

d o  tb) 1 - e x p ( - a d . a )  (b). ( - a )  O,~ (a + 
ad. a 

This also yields 

1 - e x p ( -  ad, a) (b) d (c o. - a )  o. (a + tb) o. ( - c )  = expad,  c 
o ad, a 

R e m a r k  t h a t  i f  D is any (locally defined) derivation, one has 

d b o d o" D(a o. b) = ~s (a  + sDa) o. + --~s(a) o. (b + sDb)  

It lbllows that 

O 
V~vt./#~ = Dy(Gv o. t×fl o. t#~) 

-- dsd o ((t~r + sDrta×) o. t×# o. t#a) 

+ (ta× o, (tyt~ + sD×ty/~) o. tl~.) 

d ° 
+ (tt~r o, trl~ o. (t#u + sDrtfla) ) 

1 - -  exp(-- ad.  tar)  
= exp ad. Gy D×t~× 

ad. t,~× 

1 - e x p ( -  ad.  
+ exp ad. t~t~ t×~) Dztrl~ 

ad.  t×t~ 

+ 1 - e x p ( -  ad. t/~c,) D×t~  
ad. tt~, 
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: ( l - e x p ( - a d .  t z~))  D;,tu;, 
ad, tv~ 

+ T~71T# ( i - exp( -  ad* t×# ) ) D×t,. ~ 
ad. tr~ 

( l - exp( -  ad* t~ )  ) D~t~. 
+ a d . t ~  

( l - e x p ( - a d * t ~ )  ) D~ _ D~,t~" 
+ a d . t ~  

On the other hand 

, ,  ( l - e x p ( - a d * t ~ ) ) D ~ t ~  
d,~;, - d~r - d ~ = - T ~ d ~ # + v T ~  advt,,, 

Hence 

1 - exp( -  ad. tyro ) 
-TIM#;, + vTI~ - ~ 7  D'et"t~ 

+T~,d~,./ - vT~, ( 1 - exp( -  ad. t;,~,) 

, , ~ Oq 

+ T J ~  r + T~(I - TS ~ T~)dv~ 

= T~(V-~vt×~,, + d~;, + dt~t, + d;,~). 

This proves the theorem: 

3 7 1  

f , 

Theorem 5.9. The relative and intrinsic derivation-related classes of two differentiahle 
star products • and , '  are related by 

v - - - t ( . ' .  * ) = d ( * ' )  - d(*). 
ill, 

(91 

6. The characteristic class 

Formula (9) of Theorem 5.9 gives the relation between the relative and intrinsic derivation- 
related classes of two differential star products • and , ' .  It shows that the information which 
is "'lost" in d ( , ' )  - d ( , )  corresponds to the zeroth order term in v of t ( , ' .  , ) .  We compute 
below what is this missing part. 

Take two differential star products 

u * v =u .v  + vCl(u, v) + v2C2(u, v) + . . . .  

u *' v =u .v  + vCl(u, v) + v-C2(u, v) + . . .  
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Since, by associativity at order I, C '  l - Ci is a symmetric Hochschild 2-cocycle, we 

write 

t 

C](u,  v) = C l ( u ,  v) - u . E ] ( v )  - E l ( u ) . v  + E l ( u . v ) ,  

where El is a differential operator on N defined up to a vector field. Then, by associativity 

at order 2 and 3 of  the two star products 

C ' ~ ( u ,  v) = C ~ ( u ,  v) - / [{u,  El(v)} + {El(u) ,  v} -- El({u,  v})l + a ( x , , ,  X, ,) ,  

where A is a closed 2-form on M. Notice that the de Rham class [A] of A does not depend 

on the choice of  El .  We write 

[ a ]  = (C '  2 - C ~ )  #. 

A local equivalence T~, on U,, so that 

u *' v lu .  = T ~ ( T ~ I u  * T ~ I v )  

is given by Tc~ = Id + v E ~  + -. -, where 

Ect(u) = E l ( u )  + B~(X.), 

with A = - ½  dB,~ on U, .  The (~ech class corresponding to [A] is calculated from l-forms 

Fc, on U~, wi th  A = dFc, on Uu. l f  F t~-  Fc~ = d ft~c, on Uc~NUt~ thena×t~c~ = fc~y + fy t~+ ft~,~ 

is constant on U,~ N Ut~ ~ U . /and  [A] = [ayt~,~]. Here we can take F~ = - l / 2 B c , .  So 

exp ad .  t t~ = 7"#- n o T~ 

= ld + v ( E a  - Eft)  + . . .  

= ld + v ( B a  - Bt~) + • • • 

hence 

{ t ~ u , u } =  2(Ffl - F u ) ( X . )  

= 2 d f f l a ( X , )  

= - 2 { f # a , u }  

and finally 

It " - 2 [ A ] .  ×fl~l = 

R e m a r k  6 .1 .  In [14 ,8]  it was shown that any bidifferential operator C, vanishing on con- 

stanLs, which is a 2-cocycle for the Chevalley cohomology of (N ,  { , }) with values in N 

associated to the adjoint representation (i.e. such that 

S,,~. ,,.[{u C ( v ,  w)} - C({u ,  v}, u')l  = 0, 

where S, .v . , ,  denotes the sum over cyclic permutations of  u, v and w) can be written as 

C(u ,  v) = aS3.(u ,  v) + A (X , , .  X,,) + [{u, Ev}  + {Eu ,  v} - E({u ,  v})], 
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where a ~ ~,  where S~ is a bidifferential 2-cocycle vanishing on constants which is never 

a coboundary and whose symbol is of  order 3 in each argument, where A is a closed 2-form 

on M and where E is a differential operator vanishing on constants. Hence 

HChe,.,c(N. N) = [~ ~) H2(M: ~) 

and the # operator is the projection on the second factor relative to this decomposition. 

The results above can be reformulated as follows: 

Proposition 6.2. Given two differential star products • and , ' .  the :eroth order term o f  

Deligne's relative class t ( , ' .  , )  = Y~,,- :zo v" t" ( , ' .  , )  is given by 

tl)(* '. *) = - 2 ( C ' 7  )# + 2 ( C ;  )#. 

It follows from what we did before that the association to a differential star product of 

(C,-)  # and d ( . )  completely determines its equivalence class. Let us recall that d ° ( . )  = [o~] 

and d J ( . )  = 0 and let us observe that if C i is just half the Poisson bracket, then CZ I u. v ) = 

A ( X , ,  X ,  ) where A is a closed 2-form and (Cg)#  = [A] so it "'is" the skew-symmetric part 

of C2. 

We want to now define a class c ( , ) ( v )  which will determine the equivalence class of • 

and be equivariant with respect to a change of  parameter. By this, we mean the following: 

consider a star product • defined by 

u * v = u.v + Z v"C,-(u, v), 
r~] 

where C~(u .  v) = ~{u, v} and consider its class c ( . ) (v ) .  

Consider a change of parameter f ( v )  = v + y~.,.~,_ v"f,., where J;. ~ R and let . '  be the 

star product obtained from • by this change of parameter, i.e. 

u *' v = u . t ,  + Z ( f ( v ) ) " C , . ( u .  v) 
r " ]  

= 14.t' 4"- I )C]  (b/, 1)) --~ I )2(C2( /A,  1)) ..~ ,f2CI (u ,  v ) )  + . . .  

Equivariance is the requirement that 

c ( . ' ) ( v )  = c ( * ) ( f ( v ) ) .  

Remark that if 

D,, = v~v  + ~.x~ + D~(v)  

is a local derivation of  *, then 

D'~, f (v)  a -- + 12x~, + Dl~(.f(v)) 
f ' ( v )  av 
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is a local derivation of  , ' .  Hence a local v-Euler  derivation of , '  is given by 

b ~  = V~v + [£x,  + D ~ ( f ( v ) ) ]  j 

since ( v f '  ( v ) / f ( v ) ) = 1 + f 2 v + . . . With this choice, if (Dt~ - D~ ) ( v ) = ( l / v ) a d , d / ~  ( v ), 

one has 

(D/q - b , ~ ) ( v ) -  v f ' ( v )  (D/q - D c , ) ( f ( v ) )  
f ( v )  

= v f ' ( v )  a d , , d f , ~ ( f ( v ) )  = I ad,,dt~c~(v) ' 
( f ( v ) )  2 v 

with d t ~ ( v )  = v 2 f ' ( v ) / ( f ( v ) ) 2 d f ~ , ( f ( v ) ) .  From this, we get 

v2 f ' ( v )  
d ( , ' ) ( v )  - -  ~ d ( , ) ( f ( v ) ) .  

( f ( v ) ) "  
(10) 

Let us suppose that c ( , )  is a solution of  

0 d(*)  
- - c ( * ) ( v )  - 
Ov v 2 " 

This defines c ( , )  up to its zeroth order term 

-[~o] 
c ( , ) ( v )  - 

13 

v k dk+l  --  _ _  + c ( , )  ° + v d 2 ( * )  + . . .  + -£- (*)  + . . .  

and Eq. (10) becomes:  ( O / O v ) c ( , ' ) ( v )  = ( O / O v ) ( c ( , ) ( f ( v ) ) .  

Since 

c ( * ) ( f ( v ) )  - -  
-[o)l 

f ( v )  

-[~o1 
v 

-[oA 

_ - -  + c (* )  ° + f ( v ) d 2 ( * )  + . . .  

= - - ( !  - f 2 v  + ( f 2  _ f 3 ) v  2 + . . . )  + c ( , ) o  + v d 2 ( , )  + . . .  

= - -  + f2[w] + c(*) ° + v(d2(*)  + (f~ - f~)[og]) + . . -  

we shall have equivariance of  c ( , )  under  a change of parameter  if and only if c(* ' )  ° = 

c (* )  ° + f2[co]. Since C%- = C;- - ( f2 /2 ) [w l  (indeed. {u, v} = - (o (X , , ,  XO),  this is 

achieved for c ( , )  ° = - 2 ( C ; - )  #. 

Def in i t ion  6.3. The charac t e r i s t i c  c lass  c (* )  of a differential star product • on (M, to) is 

the e lement  of  the affine space ( - [ o J ] / v )  + H 2 ( M ;  • ) [v ]  defined by 

0 1 
c ( , )  ° = - 2 ( C  2 )#, ~ v C ( * ) ( v )  = ~,2d(*) .  
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Theorem 6.4. The characteristic class has the fo l lowing properties: 

- The relative ('lass is given in terms o[ the  characteristic class by 

375 

t(* ' .  * ) = c ( * ' )  - c ( . ) .  (11) 

- The map C ~?om equivalence classes o f  star products on (M.  ~o) to the affine w a c e  

- ( I~o] /v)  + H2(M; [R)lv] mapping I*] to c(*) is a htljection - p r o v i d e d  one knows that 

there exists a differential star product on (M.  co). 

- l . f~  : M ~ M'  is a dif feomorphism and it'* is a s tarproduct  on (M.  aJ) then u *' v = 

(~- I )* (~9"u  • ~*t,) defines a star product , '  = (~/i -I  )*,  on (M' .  o/).  where o/  = 

( ~ I )*~o. The characteristic class is natural relative to di f feomorphisms 

c ( ~ - l ) * * )  = (7.,- I )*c( . ) .  (12) 

- Consider a change o f  parameter  f ( v )  = Y~,. :1 v"fr .  where f,. E R and .['1 ¢ 0 am/ 

let *' be the star product  obtained from • by this change o f  parameter, i.e. u *' v = 

t t . U " J - Z r _ . l ( f ( v ) ) r C r ( u ,  t ' )  = ld.1)-'J-fl v C I  (/d. U)~L-V2{(fl )2C2( / I .  t ' ) - k - f2CI  (tl. I' ) ) + . . ' .  
Then *' is a differential star product on (M.  o/) where ~,/ = ( I / f l )¢ , ,  and we have 

equivariance under a change o f  parameter  

c ( . ' ) ( v )  = c ( * ) ( f ( v ) ) .  113) 

Remark 6.5. It is shown in [6] that c(*) is the characteristic class introduced by Fcdosox 
as the de Rham class of  the curvature of  a generalised connection (up to a sign and factors 
of  2 coming from the assumption that the skew-symmetric part of C i is taken here to be half 

the Poisson bracket). The fact that d ( , )  and (C 2)# completely characterise the equivalence 
class of  a star product is also proven by Cech methods in [7]. 

7. The  existence of  deformations  

The method of De Wilde and Lecomte 19] for proving the existence of a star product 
on any symplectic manifold employs the same techniques that we have been using in the 
previous sections. For completeness we include a proof here as refined by De Wilde in [7 I. 

Theorem 7.1. Given a class c E H 2 ( M : • ) ~ v ] there exists a star product • with c( * ) = c. 

Proo f  Given a characteristic class c = Y~,.>o v ' c ,  we recursively build a star product • 

with C t given by half the Poisson bracket and C 2 = - ½ co such that its intrinsic derivation- 
related Deligne class is d = v 2 ( O / O v ) c .  The method consists in building, at the same time, 

a family of  local v-Euler derivations D,~ of this star product on the open set U,, 

t m D u = v l ) v  + X ' * + D ~ "  
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where Xc~ is a chosen conformal vector field on U~, ( E x ,  to = to), and D" is a formal 

differential operator vanishing on constants of the form Y~-r>_ I vr Dc, r. We have assumed - 

to be in the correct equivalence class - that 

C l ( u , v ) =  I { u , v } ,  C 2 ( u . v ) - C 2 ( v , u )  = A ( X , , X v ) ,  

where A is a closed 2-form in a given de Rham class (minus the 0-term in the characteristic 

class) and that, on U,, 7) U/s, we have 

1 
D~ - D~ = - ad .  d~c~. 

13 

where disc, ~ N t ~ [ v ]  are such that on Uc, N U~ f3 U× dc ,×+ d×/~ + dt~tr = d×t~a 6 R0vU is 

defining a 2-cocycle whose (~ech class [dy~c~] ~ H2(M;  R ) [ v ]  is the class d. 

The construction is done inductively. 

Suppose we have a star product at order K,  i.e. u • v = y~r <_ K v" C,. (u, v) with (u • v) * w = 

u * ( v * w )  at order K,  with C0(u, v) = uv,  Cl (u, v) = ½ {u, v}, and the skew-symmetric part 

of  C2 given as above in terms of  A. Suppose also that we have a family of  local derivations 

on U,, at order K - 1 given by 

0 
D~ = v Ov + Xc~ + Z v r Dto.. 

I<r<_K-I 

such that, at order K - 1 on U,~ A Ut~: 

1 ,41K_2} 
D~ -- Dc~ = - ad ,  "t~c, , (14) 

I) 

where d {K-2} is the truncation at order K - 2 of  dt~c,, i.e. tstr 

d lK-2l  r ,. 
t~ = Z v d/~c~. 

0<r<K-2 

Note that, for this induction, we can assume K > 3. Indeed, choose a symplectic connection 

V (V is torsion-free and Vto = 0) and define 

l v2 ( l  -~ 1 ) 
u * v = uv + ~v{u,  vl + - ~ P ' ( , ,  v) + ~ A ( X u ,  Xv) , 

where p2 is the covariant square of  the Poisson bracket given by 

p2(u.  v) = Ai~J' Ai:J27~. u72  : v. 
l i t 2  JIJ2 

Then • is a star product at order 2. It can always be extended to order 3 (see below; the skew 

part of  E3 vanishes since p2 is symmetric and A is closed). On the other hand £x, ,  p2 = 

Ex¢ p2 on U,, n U/~ since X,~ - Xt~ is symplectic and one can find (again, see below; the 

corresponding A2 is symmetric) a differential operator R such that OR = Ex,, p2 + 2p~_. 

Dc~ = v( d / dv ) + Jg x~, + v D I + v 2 R is a derivation at order 2 (where D~ ( u ) = A ( X . ,  X,,)) 

which satisfies 
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(D~ - D~)(u)  = £ x ~ u  + v D I  (u) - £ x ~ u  - vDl~(u) 

= {d~, u} + vA(X,c,,  x,,) 

p -  I I) = ad ,  d~,# (u) 

at order  2. 

Define.  in this setting, 

E ( u .  v, w) = (u * v) * u, - u * it '  * w) (15) 

and write E ( u .  t,. u,) = y~.. v rEr (u ,  v. u,)Vu, v, u' ~ N .  The fact that w'e have a star 

product at order  K means  that E,. = 0. Vr < K. Define also 

A . ( u .  v) = D . u  • v + u * D . v  - O . ( u  * t') 116) 

and write similarly A . ( u .  v) = Y~.,. vrA~,.Vu,  v 6 N . .  The fact that the D,, are local 

derivations at order  K - I means  that A,~,. = 0, Vr < K - 1. 

We have 

u • E ( v .  u , . . r )  - E ( u  * v.  u , . x )  + E ( u .  v * u , . x )  

- E ( u ,  v.  w * x )  + E ( u .  v .  u,)  . x  = 0 1171 

and 

u • A ,~(v .  u,)  - A ~ ( u  * v.  u,) + A . ( u .  v • u,) - A , , ( u .  t') • u' 

D . E ( u .  v. u,) - E(Dceu, v, u,) - E ( u .  D . v .  w)  - E ( u .  v . D . u , ) .  (18) 

Relat ion (17) at order  K + 1 implies  that EK+I is a Hochschi ld  3-cocycle  for N (with the 

associat ive structure given by the usual product of  functions) so 

EA'~ i(u.  v. u,) = B K ~ I ( X . .  X,.. X,,)  + ~)CK. ,(u,  v. u,). 

where B^. .  i is a 3-form on M and where  i~ denotes the Hochschi ld  coboundary  operator  

on N. The total skew-symmetr i sa t ion  of  relation (17) at order K + 2 yields 

dBh+-i = 0. (19) 

Relat ion (18) at order  K gives OA~K = 0 so 

A~,KIu. v) = G ~ K ( X , , ,  X,,) + OD,,K(U, v). 

where G,~A" is a 2- form on U~, and the skew-symmetr i sa t ion  at order K + 1 yields 

d G . K  = 3 ( (K  + 1 - 3 ) B h ' + l  + £ x , , B K * I )  (20) 

using E x ~  X .  = Xcx , . , ,  - X . .  R e l a t i o n  ( 1 4 )  implies  that 

v ( A # ( u ,  v) - A . ( u .  v)) = E ( d # . .  u. v) - E(u ,  dt~ . .  v) + E ( u .  v. d#,.). 
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so its skew-symmetric part at order K -t- 1 gives 

(Gt~K -- GuK ) (Xu.  X~,) ---- 3BK_I(Xd~,, X , ,  X,.), 

which can be reformulated as 

Gi~K -- GuK = i(X/~ - X u ) 3 B K - I .  (21) 

This last formula (21 ) shows that there is a well-defined 2-form on M 

GK = GuK -- i ( X ~ ) 3 B K ~  I. 

The relation (20) can be reformulated as 

dGK = 3(K - 2 ) B K - I .  (22) 

Hence, B K - I  is an exact 2-form; modifying accordingly the cochain CK to 

1 t 

CK(tI ,  U) = CK(U, U) 4- ~--~_ 2 G K ( X , , ,  X r )  + F K ( X u .  Xr ) .  

where FK is any closed 2-form on M, we still have a star product at order K but now the cor- 

responding EK+ I is given by E~._t (u. v, w) = EK+t (u. t,. w)+½({(C K - -CK)(U.  v).  u,}+ 

(C'  K - CK )({u, v}, w)  -- {u, (C'  K - CK )(V, w)} -- (C K - CK )(U, {v. u,})) so that the van- 
ishing of its skew-symmetric part gives 

I 1 t - -  - -  

BK-I = BK+I 3(K -- 2) dGK -~ dFK = O. 

t t 

Hence E K_ I is a Hochschild coboundary and there exists a C K +l so that 

, ~--~ I)rCr(U,U)..I_I)KCK(U,U)..f_uK~ICK+I(II, U ) t  u v =  z ~  

r~_K-I 

is a star product at order K 4- 1. Mod i fy ing  D~K-I by a l -di f ferent ial  cochain we get new 

local derivations at order K - I on U,,; 

D' , (u)  = Du(u)  + ~,K-I Ru(X,,). 

Now the corresponding A' is given by trK 

t A'~K(u, v ) =  AuK(U, V) - (K  -- 2) 2~----~GK + FK (X. ,  X,,) 

( t ' 1 GK + FK (X. .  X,,) + ~ d R . ( X . .  Xt,).  
- £ x ,  (K  - 2) 

so that, choosing 

I 1 
-~R~, = i (X~)FK  4- ~ - - - ~ i ( X ~ ) G K  4- ( K  - 2)f~,K, 

where J~, K are l-forms on U~ chosen in such a way that df~ K = FK.~ , .  the skew-symmetric 
! 

part of  A~, K vanishes 
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( I G K + F K  6 ' ` ' x  = c ~ A  - ( K  - 2) 2 - - - - - 7  

1 
- £ x , , ( ( ~ _ 2 ) G K + F I < ) +  dR`" 

1 1 
= - ( K  - 2)FK -- ISx,,FK + 2 dR,, - K--~_2di(X`')GK 

~ - 0 .  
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Hence A',,K is a Hochschild coboundary  and there exists a D',,K so that 

/9 
O'. = vS-- ' + X`" + E v"O`',. + v K- '  D'`'K. ' + v K O'̀ " A. 

1 _ < , ' 5 K - 2  

is a family of local derivations at order K of  our  new star product. 

Notice furthermore that at order K - 1 on U`" C~ Ut~ we have 

, , I {K_'~} ~ K - I  0 
(D/~ - D` ' )(u)  = - ad.,  di~`" - (u) - (C' K - Ch')(dl~`', u) 

1) 

+ v  ~ - I  (C~: - CA )(u,  d ~ .  ) 

q-I, ' K - 1  ' D'  (D~K-I - DI~K-I - -  `'A-I + D,K-.I)(U) 

1 a d . , d ~ _ 2 1 ( u ) + v K _ l ( R t  ~ R,,)(X,,)) 
U 

--2vK-I  ( 2) t,,," X u )  + F K ( X d ~ , ,  " x u ) )  

= _1 ad.,  dlK-21"t~ "̀ ~u;' + v K-  t 2( K - 2)(/'t~ h .  - .I~,K )(X,, ) 
la 

l 

P 

if we choose 

.[~A" - T`'K - -  

1 d d / ~ -  I. 
2(K - 2) 

I d K -I i.e. the Cech representation of  FK is - - ~  ×t~`" " Hence. at order K. we have 

_ ' = -  ,4 { K - I }  D~ D`" 1 ad.,  "t~c, + vA" STY`" 
12 

where Sty,, is a l-differential  l -cochain  on N`'t~. Remark that S~,, + S`" v + Syt~ = 0 hence 

we can define the l-differential  l -cochain  S,, on No by S`'(u) = ~.× O×S`'× so that Sty`" = 

St~ - S`'. Modify ing  D" by D'~ - v K S,,, we still have a derivation of *' up to order K which 

now satisfies, at order K;  

' l a d . , d ) ~ - ' l  
D~ - D`" = v 

Hence the induct ion can proceed. K 
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8. ltoehschild cohomology of a star-deformed algebra 

A differential star product on M defines on C~C(M)[vD the structure of  an associative 

algebra A = ( C ~ ( M ) [ v l ,  *). As such it can be considered either as an R- or as an R lv ] -  

algebra. In this section, we study the first and second differential Hochschild cohomology of  

A viewed as an R[vl-algebra.  The consideration of A as an R-algebra is more complicated 

and will be looked at in Section 9. p-Cochains C for A are linear in v and hence determined 

by p-multilinear maps from N to A, so by a series of p-cochains for N: 

C(u l  . . . . .  ul,) = ~ v"C,.(ul  . . . . .  up).  

r > 0  

Definition 8.1. We say a p-cochain for the ~[v]-a lgebra  A = (Nllv], *) is differential if 

each of  the Cr is a differential p-cochain on N. We denote the Hochschild coboundary for 

A by 0. and the corresponding cohomology groups computed from differential cochains 

by H,('(A, a ) .  

In this setting Proposition 3.5 can be reformulated as follows. 

Proposi t ion 8.2. H~! (A ,  A)  i s i s o m o r p h i c t o  Z I (M; R ) ~ v H  1 (M: ~ ) [ v ]  where Z I (M; J~) 

denotes  the space o f  c losed l - forms  on M.  

To obtain a similar result for the second cohomology group we refine the relationship 

between the characteristic class and the equivalence class of  a star product at a given order 

in v to a relationship between a representing 2-form and the cochains of  the star product. 

L e m m a  8.3. Given a differential s tar  product  • on (M, w). a c losed 2-form F on M and 

an integer k > O, one can build a s tar  product  *' with c ( . ' )  = c ( . )  + vk[F],  such that 

• ' coincides with • up to order k + I and such that their dif ference at order k + 2 is 

- ~ F ( X , ,  Xv) .  This *' is unique up to an equivalence o f  the f o r m  T = I + v k - 2 E  x + . . . ,  

where  X is a vector f ie ld  on M. 

Proo f  We fix, as before, a locally finite contractible open c o v e r / , / =  {Uu},,e/ and choose 

F = da¢, on Uc~, at~ - a ~  = da/~c~ on Uc, N U~ and a~,/~,~ = auy +a×/~ +at~a on Ucr N U/~ n Uy 
so that {azt~u } is a representative of  the t~ech class corresponding to [F]. 

A corollary of the proof of  Proposition 4.5 is that we can find differential operators T,~ 
on Uu with 

Ta(u) = u + vk+l act( Xu)  -Jr . . .  

so that T~ l o T,, = expad~ t ~ ,  where the t~,, ~ N ~ t ~ v ]  are of the form 

t~c~ = vkal~u q- . . .  

and satisfy 

arflu ---- tuy o,  tyl ~ o,  tl~ u. 
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The differential star product . "  defined on U,~ by 

u . " v  = T ~ ( T f l u .  T f l v )  

coincides with * at order k + 1 and the skew-symmetric part of their difference at order 

k + 2 is given by - ~ F ( X , ,  Xr). Combining with an equivalence T = / + v ~ ' 2 E  if the 

symmetric part of their difference at order k + 2 is "dE. we get a . '  as stated in the lemma. 

Now two such star products are equivalent since they have the same characteristic c lass  

Let T = Y~,±i v"T,. be an equivalence between them. If j _< k + 1, the equivalence 

relation at order j shows that ~ is a vector field and the antisymmetric part of the terms of 

degree j + 1 show that it is a Hamiltonian vector field T~lu)lt ,, = {h~,. u} for some locally 

defined function h~,. Then t, - I a d .  h,, is globally defined and ( e x p ( - v  ~ I a d .  h,, ~) :: 7 =: 

Id + O ( v  i+ I ) is again an equivalence between our two star products. By induction on J. we 
can assume that the equivalence is of  the form T = / + v j' - 2£ \ .  + . . . .  where X is a vector 

field on M. I~ 

Given a differential star product • on (M, w) and a formal series of closed 2-forms 

on M F = vkFk + Y-~,.>k vrF, (k integer >_ 0), one can build as above a family *' of 

differential star products, depending smoothly on s. such that c(* ' )  = c ( . )  + s[F], such 

that . '  coincides with • at order k + 1 in v for all s and such that their difference at order 

k + 2 in v is - l / 2 s F k ( X , .  X,,). Define 

Dt . (u . v )=  v -2 d u . '  v. 
d s  g=o 

This is a 2-cocycle for the v-linear Hochschild cohomology of A. Its lowest order term is 

- ~ t ,k F(X, , .  X,.). The class of this Hochschild 2-cocycle does not depend on the choice of 

the smooth family of  star products . '  since any other choice corresponds to 

u ¥ ' v  = L ( L - l u  . '  T,-tv), 

with 7", = 1 + vk-2£x, + ... ,  and 

D'(u,v) = v-2--dsd ou.~,v= D(u.v)+'O.E(u .v) .  

where 

E(u) = v -2 d 'oT_lu 
d s  

This yields a map D • Z2(M; R)llv] --~ H~(A, A). 
Let D be a v-linear differential 2-cocycle for the Hochschild cohomology of A. It is 

determined by its values on N × N. Assume its lowest order term is v t D~. Looking at 

~. D = 0 at order k and its skew-symmetric part at order k + 1 shows that there is a closed 

2-form F on M such that Dt (u, v) = F ( X . ,  Xv) + S(u, v) where S is a symmetric cocycle 

for the Hochschild cohomology of  N. Hence S is a coboundary in that cohomology, S = ;9 R, 
and vkO.R has lowest order term yrS. So D is cohomologous to D-21' + D', with D/ as 
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before for any F '  = v ~ F + • - • and D '  with lowest order term of degree k + 1. If the closed 

2-form is exact, F = d B ,  and i f k  > 0. then D - O.E where E ( u )  = v k - t B ( X , , )  has 

lowest order term of  degree k which is symmetric,  hence can be removed by adding another 

coboundary. If D is a coboundary and has lowest order term v k ( F ( X , .  Xv)  + S(u,  v)). then 

either k = 0 and F = 0, or k > 1 and F is exact. This yields the following: 

Proposition 8.4. H,~ ( A .  A)  is canonically  isomorphic  to 

Z2(M; R) ~ v H 2 ( M :  ~)~vll. 

where Z2(M: ~) denotes the space o f  closed 2-forms on M. The isomorphism associates to 
U r the class o f  F = ~,. ,_o F,. where F,. ~ Z2(M:  R) the class o f  the 2-cocvcle Dl . (u ,  v) : 

v -  2 (d /ds  )lou * ~ v where . ~ is any f ami l y  o f  differential star products, depending smoothly  

in s, such that c(* ~) = c(*) + s [F] ,  such that .~ coincide with • at order 1 in v f o r  all s 

and such that their difference at order 2 in v is - I s I '])(X,. X ,  ). 

R e m a r k  8.5. If we replace NIl v i by the ring of formal Laurent polynomials  ~1 v -  J. v]] then 

we can also subtract an exact term from the leading closed 2-form and we obtain the result of 

Weinstein and Xu [25] that the v-linear Hochschild cohomology H,~(N[v -I  . vll, N [ v  -I  . vll) 

is H e ( M ;  ~)[v  - I ,  vii. 

Remark 8.6. Proposition 8.4 is still true if , '  is any family of differential star products 

depending smoothly on s such that c(,i~) ---- c ( , )  and (d /d s )10c (* ' )  --  IF] ,  such that at 

order I *'  coincides with • for all s and at order 2 their difference is - ~ s F ( X , ,  Xv) .  In 

particular, if (u *' v) (v)  = (u * v ) ( f , ( v ) )  with ~)(v) ---- v and (d /ds ) lo f~ (v )  = v 2 then 

(d/ds)10u * '  v corresponds to o) + Y~-k vkdk if d ( , )  = [o~l + Y-~-k vkd~ . 

9. Derivations and automorphisms of a star product 

In this section, we consider a star-deformed algebra as a real algebra and we study its 

derivations and its automorphisms. We assume throughout this section that the manifold M 

is connected. The results presented here were obtained with one of  our students. Rauch [23]. 

Definit ion 9.1. A derivation of a differential star product • on (M, w) is an l~-linear map 

D : N ~ v 8  ~ NUvO, continuous in the v-adic topology (i.e. D(y~,. t/'Ur) is the limit of  

Y~,. ._- /v D ( v" u ,. ) l, such that 

D(u * v) = Du  * v + u * Dv .  

Note that 

D ( v )  * u = D ( v  * u) - v . D ( u )  = D(u  * v) - D ( u )  . v = u . D ( v )  

so that D ( v )  must be central and thus D ( v )  ~ •[v] .  Hence D restricted to ~ [ v ]  is a 

derivation D ( g f v )  = f t v ) t O / O v ) g ( v )  where f ( v )  ~ ~ i v l .  Hence D ( g ( v ) u )  = 
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f ( v ) ( 3 / ' ~ v ) g ( v ) u  + g (v )D(u ) .  The term of order zero in v of the derivation relation implies 

that f ( v )  = v f ( v ) .  Combining this with some previous results we get the following: 

Propos i t ion  9.2. Any local derivation o f  a differential star product (on a copTtractibh, open 

set U , )  is o f  the form 

O~ = .f(v)O'~, + D~, 

where D" is a v-linear local derivation o f , .  i.e. 

D~ = _1 ad ,  da.  d ,  E Na[v  ], 
V 

where f ( v )  E [~[v] and where D~', is a chosen local v-Euler derivation. 

Definit ion 9.3. An isomorphism A from a differential star product • on (M.  oJ) to a d i s  

ferential star product , '  on (M ' . t o ' )  is an ~-l inear  bijective map A : Nlv]l  ~ N'~vU. 

continuous in the v-adic topology, such that 

Atu • v) = Au *' Av.  

Notice that i f  A is such an isomorphism, then A (l,) is central for , '  so that A (v) = f (  v ). 

where f ( v )  E ~ [ v ]  is without  constant term to get the v-adic continuity. Let us denote by 

• " the differential star product on (M.  o)t = ( l / f t  )to) obtained by a change of parameter 

u *" 1~ : u * t ' t t v l  : F ( F - l u * F - I u )  

for F : N~t,]  ~ N~v]  : ~ , . v " u , .  ~ ff~_,,.f(v)"u,.. Define A' : N~l,] --~ N ' [ v ]  by 

A = A' o F. Then A' is a v-linear isomorphism between *" and *': 

A' (u ." t,) = A'tt *' A'v. 

At order zero in v this yields 

ai,(u.~,) = al,u.Ai, t' 

so that there exists a diffeomorphism ~ : M'  ~ M with Ainu = ~b%~. The skew-symmetric 

part of  the isomorphism relation at order 1 in v implies that ~*tol = to'. Let us denote by 

• "' the differential star product on (M, tol ) obtained by pullback via ~ of  , ' :  

u *'" v = ( ~ - I ) * ( ~ u  *' ~*t , )  

and define B : N[vD --~ N~v~ so that A' = tp* ..~ B. Then B is v-linear, starts with the 

identity and 

B(u , "  v) = Bu , " '  By 

so that B is an equivalence - in the usual sense - between , "  and , ' " .  Hence. we summarisc: 

P ropos i t ion  9.4. Any isomorphism between two differential star products is the combi- 

nation o f  a change o f  parameter and a v-linear isomorphism. Any v-linear isomorphism 
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between two star products * on ( M , to) and *' on ( M' ,  to') is the combination of  the action 

on functions o f  a symplectomorphism 7z : M'  --~ M and an equivalence bem'een * and 

the pullback via ~ o f  , ' .  In particular, it exists i f  and only if  those two star products are 

equivalent, i.e. i f  and only i f  OP- I)*c(*') = c(*), where here ( ~ - I  ), denotes the action on 

the second de Rham cohomology space. 

This implies immediately: 

Corol lary  9.5. Two star products * on (M, co) and*'  on (M',  w') are isomorphic i f  and only 

if  there exist f (v) = ~r>_i v" fr  E ~0v]  with f l  ~ 0 and lp : M'  ~ M, a symplectomor- 

phism, such that 0p - t ) * c ( * ' ) ( f ( v ) )  = c( , ) (v ) .  In particular [131: /f  H2(M: ~) = ~[wl 

then there is only one star product up to equivalence and change o f  parameter. 

R e m a r k  9.6. See also Omori et al. [21 ] who show that when reparametrisations are allowed 

then there is only one star product on CP n. 

In particular, Proposition 9.4 gives: 

Corol lary  9.7. A symplectomorphism ~ o f  a symplectic manifold (M, w) can be extended 

to a v-linear automorphism o f  a given differential star product on (M, 09) if  and only i f  

(Tz)*c(*) = c(*). 

Notice that this is always the case if ~p can be connected to the identity by a path of  

symplectomorphisms (I 11 ]. 

10. On Deligne's definition of  a deformation 

In this section we fill in some of  the steps to get from the definition of  a deformation in 

Deligne's paper [6] to the usual one considered in the first part of  these notes. 

10.1. Deformations o f  C~Z(M) 

We shall work just with real smooth functions on a manifold, the other cases considered 

by Deligne can easily be handled in a similar manner. Denote by N the l/~-algebra of smooth 

functions on a manifold and consider a pair (A, ~0) consisting of  an ~[vl -a lgebra  A and a 
surjective R-algebra homomorphism 

9 : A - - +  N 

such that Ker q9 = vA. 

N is commutative so ~o(a)~o(b) = qg(b)~o(a) and hence ab - ba ~ vA. Thus there is an 
element which we denote by v - t  (ab - ba) in A which is unique up to an element of A 
annihilated by ~0. We shall shortly assume that A is free over R [ v |  so we feel free to abuse 
notation Ibr now. 
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P r opos i t i on  10.1. T h e r e  is a u n i q u e  P o i s s o n  s t r u c t u r e  on  N such  tha t  

~o (v - l  t a b  - b a )  ) = {~0(a). ~0(b)} 

385 

P r o o f  l f u .  v E N p i c k a ,  b ~ A such that~0(a) = u, qo(b) = t'. Then define {u,v} = 

~o(v-~ ( a b - h a ) ) .  This is well defined since if~o(a') = u and ~p(b') = v then and a - a '  = vc 

and b - l / =  v d  so  

( a b  - b a )  = (a'  + vc)(b" + v d )  - (b' + v d ) ( a '  + w')  

= a ' b '  - b ' a '  + v ( c b '  - b ' c +  a ' d  - d a ' )  + v2(cd - de}. 

Thus  

cp(v - I  ( a b  - h a ) )  = g)(v -1 (a ' b '  - b ' a '  ) + cb '  - b ' c  + a ' d  - d a '  + v ( c d  - d c ) )  

= q ) ( v - I  ( a ' b '  - b ' a ' ) ) .  

The bracket {, } on N obviously  satisfies the Bianchi identity. It is a Poisson bracket 

since if ~o(a) = u, ~oCb) = v, ~o(c) = u, then ~o(ab) = uv so 

{uv ,  u , } = ~ o ( v  t ( a b c - c a b ) )  

= ~o(v - I  ( a b c -  a c b  + a c b  - c a b ) )  

= q ) ( a v -  l (be  - cb )  + v -  I ( ac  - c a ) b )  

= ~p(a)~o(v- I (be  - cb ) )  + q ) ( v - I  ( ac  - ca ) )q ) (b )  

= u { v .  w} + {u. u,},,. [] 

Definition 10.2. We say A is v - a d i c a l l y  c o m p l e t e  if, given any sequence a , ,  r >_ 0 of 

e lements  of  A, there is an e lement  a ~ A such that for each k > 0 there is an element  

b k , i  ~ A w i t h  

a - ~ L ' r o r  = vL- Ibk+ l .  
r--0 

where a is denoted by ~-~-r_>0 I)rar" 

Thus A is closed under  taking formal power series in its elements.  An example is, of  

course, N ~ v ] .  

In order that the algebra A looks like Nil vB we assume that A is v-adically complete and 

has an E- l inear  subspace mapped bijectively onto N by ~0 which, together with t,, freely 

generates A in the v-adic topology. In other words, we have an E-l inear  map p : N --* A 

with ~o o p = ld and such that the map ~" : N ~ v ]  ---* A given by 

\ , -  >o ] ,.= o 
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induces a bijection of N | v ]  onto A (~" exists from the v-adic completeness of A). In this 

case, if  u, v e N then there are functions C,.(u, v) e N with 

Z vrp(c"(u"  v)). (23) p ( u ) p ( v )  
r~_O 

We call such a map p a section of (A,  ~o). 

Proposi t ion 10.3. Given a section p and the C,. as above then 

Co(u,  v) = uv ,  Ci (u, v) - Ci (v, u) = {u, v}. 

Proof 

Co(u, v) = ~o(p(Co(u, v)) 

= ~o(p(u)p(v)) = ~o(p(u))~o(p(v)) = uv 

and 

Cj (u, v) - Ci (v, u) = ~o(p(Cj (u, v)) - ~o(p(Ci (v, u)) 

= ~o(v - lp (u )p (v )  - v - I p ( v ) p ( u ) )  

= { u ,  v } .  [ ]  

If we define ~p0 " N l v ]  ~ N by 

then ~o o ~" = ~Oo. 

Fixing a section p we can transfer the algebra structure from A to N l v |  using ~ 'and  

denote the resulting multiplication by *: 

u • v = p I ( ~ ( u ) ' ~ ( v ) ) .  

If we restrict this to elements u,  v o f  N then 

u • v = Z v"C,(u ,  v), u, v 6 N. 

r>{)  
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In view of Proposition 10.3, • is a star product on N given by the cochains C,. 

If p '  is a second section and *' the star product it defines 

u *  t , =  v C , . ( u , v ) .  u . v  6 N .  

r .0  

where 

r t t p'(u)p'(v) = v p (C r(U. t')). 

r20  

then 

p (u) = Z v"p(T, . (u) )  
r - 0  

tor some sequence of functions 7",. (u). Applying ~p to this equation we get 

3X7 

u = To(u) 

so that 

7b = id.  

If we set 

= u + T(l¢)  p"T,.(u), 
r : z I  

then 

Z v"p(T,.(u)) Z v"p(T~(v)) = Z t'l' 
r -0 ~ ZII  p >0 

P 

/~ -'_-(1 

so that 

p'(u)p'(t ,)=~ " ' ' v p (C ,.(u. v)) 

r Z 0  

p(7; .(u))p(T,( t ' ) )  

I" • ' , = I ~  

E E 
r4-s=p tl-'() 

r > ( l  ~ " 0  

Comparing coefficients of powers of v we obtain 

r--s=t p+q=t r~-.~ = p  

= Z Cq(T,.(u).  T, lv)). 
r + ~ + q = t  
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A straightforward calculation now shows that 

T(u  *' v) = T (u )  * T ( v )  

so that , '  and * are equivalent. 

To obtain a differential star product we have to assume that there is a section p which 

makes the C,. into bidifferential operators. We shall call such a p a differential section. Two  

different sections p~, i = 1,2 give rise to equivalent star products. Theorem 2.22 says that 

if the two star products are differential then they are equivalent by a differential operator. 

Thus if a deformation A gives rise to a differential star product, then all the differential star 

products it gives rise to are in a single differential equivalence class. 

Definit ion 10.4. A (formal, differential) deformation of a symplectic manifold (M, w) is a 

pair (A, ~p) consisting of  an ~ [v ] - a lgeb ra  A and an ~-algebra  epimorphism ¢p : A --~ N = 

C X ( M )  such that 

1 Ker ¢ p = v A ;  

2 the Poisson bracket induced on N by Proposition 10.1 coincides with that coming from 

the symplectic structure; 

3 there are B-linear maps p : N ----> A (called sections of  ~0) whose image freely generates 

A as a v-adically complete ~ v l - a l g e b r a ;  

4 the cochains C, (u ,  v) associated to such a section p by (23) are bidifferential operators 

(p is a differential section). 

In the usual definition of  star product 1 is assumed to be an identity for the star multipli- 

cation. This can be made to be the case here. 

Propos i t ion  10.5. Let ~o : A --, N be a deformation then A has a unit), l a in ¢p-I( l ) .  

There exist sections p with p ( 1 ) = 1 A. 

Proo f  Pick a in A with ¢p(a) = 1. Then left (or right) multiplication by a is a bijection of  

A with itself. This follows easily by an induction after choosing a section p to represent 

elements of  A as formal power series. Thus a must be left multiplication of  some element 1 ,~ 

by a: a = a l a .  Then any element b is ca for some c so b l a  = c a l a  = ca = b. Similarly 
t t t 

there is an element 1A with a = l~a .  Then li4b = b for any b. Thus ! a = 1 a IA = la  SO 

la  is a two-sided unity tbr A. Given any section p '  of~0 then c = p ' ( l )  is invertible with 

¢p(c) = ¢p(c -I  ) = 1. Thus p(u )  = c - l p ' ( u )  is a section with p ( l )  = l a .  [] 

R e m a r k  10.6. If we take a section p respecting unities then the cochains Cr it defines vanish 

on constants for r > 1. The corresponding star product then satisfies 1 • u = u * 1 = u for 

all u in N [ v ] .  

Definit ion 10.7. Two (Ai, qgi), i = 1,2 deformations of  N are said to be equivalent if there 

is an ~ [v ] - a lgeb ra  isomorphism ~ : A I ~ A2 continuous in the v-adic topology such that 



S. Gutt. J. Rawnsle)'/Journal of Geometry and Physic.s 29 (/999) 347. 392 

Here cont inui ty  means  that ~p commutes  with taking formal power series 

ffl I~__~prarl ~ EvrffY(ar)" 
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P r o p o s i t i o n  10.8. Equivalent deformations o f  N induce the same Poisson bracket on N. 

Proof Let ( A i .  ~Pi), i = 1,2 be two detormat ions  of N with ~p : A I --~ A2 an isomorphism 

such that ~02 o ~p = ~p~, and {, }i the induced Poisson brackets. If u, v E N, pick ai, hi E A, 

w i t h  ~oi(ai) = u, ~oi(bi) -~- V then ~p(a]) - a2 = vc, ~ ( b l )  - b2 = yd. Thus  f f y ( a l b l  - 

b lal) = a~b~ - b2a2 + ve for e = a2d - d a 2  + cb2 - b2c+ v(cd - d c ) .  Then cpz(e) = 0 so 

{u, tq2 = ~2(t  ' - I  (a2b2-b2a2))  = ~p2(v-Iff/(albl - b l a l  )) = ~02(~( t ' - I ( a l b l  - b l a l  ))) = 

c p l ( v - I ( a l b l  - b l a l ) )  = {u, t ,}l .  t i  

Given equivalent  deformations (Ai. ~0i). i = 1,2 of N with ~" : Al ~ A2 such that 

~P2 o ~p -= ~01, if pl is a section of~ol then P2 = ~P c Pt is a section of ~02. Let ,ci~, i = I, 2 

be the star products the two sections define with cochains C~. i~. Then 

v" p2(C~.21(u, t')) = p2(u)p2(v) 
r q )  

= ~P(Pl (u )p l  (v))  

= y~. v"m(c¢.  I ~(u, v)) 
r - O  

so C~- 2~ = CI-~. I f  we had used a di f ferent  section o f  ~P2 we wou ld  have obtained equivalent  

cochains so equivalent  deformat ions  lead to equivalent  star products. This  suggests the 

fol lowing theorem. 

T h e o r e m  10.9. Equivalent deformations (Ai, ~Pi), i = 1,2 o f  N induce equivalent star 

products on N Iv ]. This induces a bijection between the set o f  equivalence classes of  de- 

.formations and the set o f  equivalence classes o f  star products. 

Proof What  remains to be proved is that the map constructed in the previous paragraph 

is bijective. To see this we take a star product • arising from sections Pi of  detormat ions  

(Ai ,  ~o~ ), i = 1 , 2  so that 

~_avrpi(C,.(u. v)) p i ( u ) p i ( v ) ,  i = 1.2. 
r>O 

Define ~p : A 1 ~ A2 by ~p = P'2 o ~ - I .  ~p is clearly a bi ject ion from Ai to A2 and if we 

define ~oo ()--~r'-O vru' ) = UO then 99i o ~ = ~ , ,  i = 1,2 so 
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~02 o ~ = ~02 o ~ 2  o ~ '  = ~00 oG- ,  t = ~,.  

It remains to show that ~ is an algebra isomorphism (it is ~ [ v l - l i n e a r  from the way 

it is defined). But this follows since both algebras Ai are isomorphic to ( N [ v ] ,  , )  and 

intertwines the two isomorphisms. 

10.2. Deformations o f  the sheaf  C'~ 

The fact that A ~ ~ C ~ ' (M)  has differential sections allows us to localise elements of  A 

on M. More precisely, i f p  and p '  are two differential sections then ~'and ~" differ by a formal 

differential equivalence T such that ~ '  = ~ 'o  T. I f a  = P(Y~r~0 vrur)  = ~'w (y'~r>( j v,.U,r) 
then )--~-r>(, v r u r  = T (Y~.r>O Ijrutr)" Thus all functions u r vanish on an open set U if and 

only if all the u~. do. Hence we can unambiguously make the following definition: 

Definit ion 10.10. We say that a ~ A vanishes on the open set U if there is a differential 

section p such that a = P'()--~-,.>0 vrur) with all u,.]c = 0. We say a = b on U i f a  - b 

vanishes on U. 

Definit ion 10.11. Given x e M we say a and b are equivalent at x if there is an open set 

U containing x with a = b on U. The equivalence class of  a at x is called the germ of  a at 

x and denoted by a[x]. Ax denotes the set of  germs of  elements of A at x. 

We claim that .A.~ is an algebra over R [ v ]  and has an l~-algebra homomorphism ~0 onto 

C~ ,  the algebra of germs of  smooth functions at x. Here we use the fact that the sheaf of  

smooth functions is soft (mou): every local germ is the germ of  a globally defined smooth 

function. 

L e m m a  10.12. l f  a vanishes on U and b E A then ab vanishes on U. 

Proof. Picking a differential section p, the multiplication in A is given by a differential star 

product and if one of  the formal power series vanishes on an open set so does the product 

since it is given by differential cochains. [] 

This allows us to define the product of  two germs as the germ of  the product of  any 

two elements in the germs and .At becomes an algebra as claimed. To construct a sheaf 

we topologise the disjoint union ..4 = ©x..4., by taking as a base for a topology the sets of 

germs of  elements a in A over open sets U in M...4 is then a sheaf of  algebras and we have 

a morphism ~p : ..4 ~ C ~  of  sheaves of  algebras which is clearly surjective. The kernel 

of  ¢p : A~ ~ C~' is found as follows: Suppose ¢p(a[x]) = 0 then a = P'()--'~-r>O v"ur) 
with u0[x] = 0 If we set b = a - p(uo) then b has the same germ as a at x and b = 

v~(Y~r>, , v" u,.+,) = vc. Thus a[x]  = vc[x]. Hence Ker ¢p = vA.  

If.A is the sheaf associated to a differential deformation ¢p : A ~ C ~ ( M ) ,  then consider 

an element a of  A. Taking the germ a[x] of a at each x E M, gives a global section ~" of  

A.  
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L e m m a  10.13. The map a ~-~ ~, jus t  defined, gives a bijection o f  A with F .4. 
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Proof  If  ~i" = 0 then a is equivalent  to 0 on a ne ighbourhood of  each point of  M. Pick a 

differential  section p, then a = P ' ( ~ , . > 0  v"u,.) with each u ,  vanishing on a ne ighbourhood 

of  each point. It fo l lows that u,. = 0, Vr > 0 and hence that a = 0 so that the map is 

injective. 

For surjectivity, fix a differential  section p. Then given a section ff o f  .4, it determines  a 

sequence o f  germs of  funct ions u,- at each point and varying the point we get a section of  

the sheaf  of  germs of  functions. This  must c o m e  from a global  sm~x)th function and hence 
l)r from some e lement  p (Y'~-,-::o u,.) o f a .  This  proves the surjectivitv, t-1 

These  observat ions  al low us to pass back and forth be tween the global  algebras q2 " A 

• C ~ (or their presheavesl  in C "  (M) to the corresponding sheaves o f  algebras cp A --~ M 

such a way that the original  algebras are the spaces o f  global sections. 
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